Jump to content

Chemical decomposition

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Mysterious Whisper (talk | contribs) at 12:45, 12 November 2016 (Undid revision 749079589 by 115.164.87.115 (talk)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Chemical decomposition, analysis or breakdown is the separation of a chemical compound into elements or simpler compounds. It is sometimes defined as the exact opposite of a chemical synthesis. Chemical decomposition is often an undesired chemical reaction. The stability that a chemical compound ordinarily has is eventually limited when exposed to extreme environmental conditions like heat, radiation, humidity or the acidity of a solvent. The details of decomposition processes are generally not well defined, as a molecule may break up into a host of smaller fragments. Chemical decomposition is exploited in several analytical techniques, notably mass spectrometry, traditional gravimetric analysis, and thermogravimetric analysis.

A broader definition of the term decomposition also includes the breakdown of one phase into two or more phases.[1]

There are three broad types of decomposition reactions: thermal, electrolytic and catalytic.[citation needed]

Reaction formula

The generalized reaction for chemical decomposition is:

AB → A + B with a specific example being the electrolysis of water to gaseous hydrogen and oxygen:
2 H2O(I) → 2 H2 + O2

Additional examples

An experiment describing catalytic decomposition of hydrogen peroxide. A concentrated hydrogen peroxide solution can be easily decomposed to water and oxygen.

An example of spontaneous decomposition is that of hydrogen peroxide, which will slowly decompose into water and oxygen:

2 H2O2 → 2 H2O + O2

Carbonates will decompose when heated, a notable exception being that of carbonic acid, H2CO3. Carbonic acid, the "fizz" in sodas, pop cans and other carbonated beverages, will decompose over time (spontaneously) into carbon dioxide and water

H2CO3 → H2O + CO2

Other carbonates will decompose when heated producing the corresponding metal oxide and carbon dioxide. In the following equation M represents a metal:

MCO3 → MO + CO2

A specific example of this involving calcium carbonate:

CaCO3 → CaO + CO2

Metal chlorates also decompose when heated. A metal chloride and oxygen gas are the products.

2 MClO3 → 2 MCl + 3 O2

A common decomposition of a chlorate to evolve oxygen utilizes potassium chlorate as follows:

2 KClO3 → 2 KCl + 3 O2

See also

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "decomposition". doi:10.1351/goldbook.C01020