Conway group Co3
Algebraic structure → Group theory Group theory |
---|
In the area of modern algebra known as group theory, the Conway group is a sporadic simple group of order
- 495,766,656,000
- = 210 · 37 · 53 · 7 · 11 · 23
- ≈ 5×1011.
History and properties
[edit]is one of the 26 sporadic groups and was discovered by John Horton Conway (1968, 1969) as the group of automorphisms of the Leech lattice fixing a lattice vector of type 3, thus length √6. It is thus a subgroup of . It is isomorphic to a subgroup of . The direct product is maximal in .
The Schur multiplier and the outer automorphism group are both trivial.
Representations
[edit]Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation.
Co3 has a doubly transitive permutation representation on 276 points.
Walter Feit (1974) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either or .
Maximal subgroups
[edit]Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.
Larry Finkelstein (1973) found the 14 conjugacy classes of maximal subgroups of as follows:
No. | Structure | Order | Index | Comments |
---|---|---|---|---|
1 | McL:2 | 1,796,256,000 = 28·36·53·7·11 |
276 = 22·3·23 |
McL fixes a 2-2-3 triangle. The maximal subgroup also includes reflections of the triangle. has a doubly transitive permutation representation on 276 type 2-2-3 triangles having as an edge a type 3 vector fixed by . |
2 | HS | 44,352,000 = 29·32·53·7·11 |
11,178 = 2·35·23 |
fixes a 2-3-3 triangle |
3 | U4(3).22 | 13,063,680 = 29·36·5·7 |
37,950 = 2·3·52·11·23 |
|
4 | M23 | 10,200,960 = 27·32·5·7·11·23 |
48,600 = 23·35·52 |
fixes a 2-3-4 triangle |
5 | 35:(2 × M11) | 3,849,120 = 25·37·5·11 |
128,800 = 25·52·7·23 |
fixes or reflects a 3-3-3 triangle |
6 | 2·Sp6(2) | 2,903,040 = 210·34·5·7 |
170,775 = 33·52·11·23 |
centralizer of an involution of class 2A (trace 8), which moves 240 of the 276 type 2-2-3 triangles |
7 | U3(5):S3 | 756,000 = 25·33·53·7 |
655,776 = 25·34·11·23 |
|
8 | 31+4 +:4S6 |
699,840 = 26·37·5 |
708,400 = 24·52·7·11·23 |
normalizer of a subgroup of order 3 (class 3A) |
9 | 24·A8 | 322,560 = 210·32·5·7 |
1,536,975 = 35·52·11·23 |
|
10 | PSL(3,4):(2 × S3) | 241,920 = 28·33·5·7 |
2,049,300 = 22·34·52·11·23 |
|
11 | 2 × M12 | 190,080 = 27·33·5·11 |
2,608,200 = 23·34·52·7·23 |
centralizer of an involution of class 2B (trace 0), which moves 264 of the 276 type 2-2-3 triangles |
12 | [210.33] | 27,648 = 210·33 |
17,931,375 = 34·53·7·11·23 |
|
13 | S3 × PSL(2,8):3 | 9,072 = 24·34·7 |
54,648,000 = 26·33·53·11·23 |
normalizer of a subgroup of order 3 (class 3C, trace 0) |
14 | A4 × S5 | 1,440 = 25·32·5 |
344,282,400 = 25·35·52·7·11·23 |
Conjugacy classes
[edit]Traces of matrices in a standard 24-dimensional representation of Co3 are shown.[1] The names of conjugacy classes are taken from the Atlas of Finite Group Representations.[2] [3] The cycle structures listed act on the 276 2-2-3 triangles that share the fixed type 3 side.[4]
Class | Order of centralizer | Size of class | Trace | Cycle type | |
---|---|---|---|---|---|
1A | all Co3 | 1 | 24 | ||
2A | 2,903,040 | 33·52·11·23 | 8 | 136,2120 | |
2B | 190,080 | 23·34·52·7·23 | 0 | 112,2132 | |
3A | 349,920 | 25·52·7·11·23 | -3 | 16,390 | |
3B | 29,160 | 27·3·52·7·11·23 | 6 | 115,387 | |
3C | 4,536 | 27·33·53·11·23 | 0 | 392 | |
4A | 23,040 | 2·35·52·7·11·23 | -4 | 116,210,460 | |
4B | 1,536 | 2·36·53·7·11·23 | 4 | 18,214,460 | |
5A | 1500 | 28·36·7·11·23 | -1 | 1,555 | |
5B | 300 | 28·36·5·7·11·23 | 4 | 16,554 | |
6A | 4,320 | 25·34·52·7·11·23 | 5 | 16,310,640 | |
6B | 1,296 | 26·33·53·7·11·23 | -1 | 23,312,639 | |
6C | 216 | 27·34·53·7·11·23 | 2 | 13,26,311,638 | |
6D | 108 | 28·34·53·7·11·23 | 0 | 13,26,33,642 | |
6E | 72 | 27·35·53·7·11·23 | 0 | 34,644 | |
7A | 42 | 29·36·53·11·23 | 3 | 13,739 | |
8A | 192 | 24·36·53·7·11·23 | 2 | 12,23,47,830 | |
8B | 192 | 24·36·53·7·11·23 | -2 | 16,2,47,830 | |
8C | 32 | 25·37·53·7·11·23 | 2 | 12,23,47,830 | |
9A | 162 | 29·33·53·7·11·23 | 0 | 32,930 | |
9B | 81 | 210·33·53·7·11·23 | 3 | 13,3,930 | |
10A | 60 | 28·36·52·7·11·23 | 3 | 1,57,1024 | |
10B | 20 | 28·37·52·7·11·23 | 0 | 12,22,52,1026 | |
11A | 22 | 29·37·53·7·23 | 2 | 1,1125 | power equivalent |
11B | 22 | 29·37·53·7·23 | 2 | 1,1125 | |
12A | 144 | 26·35·53·7·11·23 | -1 | 14,2,34,63,1220 | |
12B | 48 | 26·36·53·7·11·23 | 1 | 12,22,32,64,1220 | |
12C | 36 | 28·35·53·7·11·23 | 2 | 1,2,35,43,63,1219 | |
14A | 14 | 29·37·53·11·23 | 1 | 1,2,751417 | |
15A | 15 | 210·36·52·7·11·23 | 2 | 1,5,1518 | |
15B | 30 | 29·36·52·7·11·23 | 1 | 32,53,1517 | |
18A | 18 | 29·35·53·7·11·23 | 2 | 6,94,1813 | |
20A | 20 | 28·37·52·7·11·23 | 1 | 1,53,102,2012 | power equivalent |
20B | 20 | 28·37·52·7·11·23 | 1 | 1,53,102,2012 | |
21A | 21 | 210·36·53·11·23 | 0 | 3,2113 | |
22A | 22 | 29·37·53·7·23 | 0 | 1,11,2212 | power equivalent |
22B | 22 | 29·37·53·7·23 | 0 | 1,11,2212 | |
23A | 23 | 210·37·53·7·11 | 1 | 2312 | power equivalent |
23B | 23 | 210·37·53·7·11 | 1 | 2312 | |
24A | 24 | 27·36·53·7·11·23 | -1 | 124,6,1222410 | |
24B | 24 | 27·36·53·7·11·23 | 1 | 2,32,4,122,2410 | |
30A | 30 | 29·36·52·7·11·23 | 0 | 1,5,152,308 |
Generalized Monstrous Moonshine
[edit]In analogy to monstrous moonshine for the monster M, for Co3, the relevant McKay-Thompson series is where one can set the constant term a(0) = 24 (OEIS: A097340),
and η(τ) is the Dedekind eta function.
References
[edit]- ^ Conway et al. (1985)
- ^ "ATLAS: Conway group Co3".
- ^ "ATLAS: Conway group Co1".
- ^ "ATLAS: Co3 — Permutation representation on 276 points".
- Conway, John Horton (1968), "A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups", Proceedings of the National Academy of Sciences of the United States of America, 61 (2): 398–400, Bibcode:1968PNAS...61..398C, doi:10.1073/pnas.61.2.398, MR 0237634, PMC 225171, PMID 16591697
- Conway, John Horton (1969), "A group of order 8,315,553,613,086,720,000", The Bulletin of the London Mathematical Society, 1: 79–88, doi:10.1112/blms/1.1.79, ISSN 0024-6093, MR 0248216
- Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham (eds.), Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
- Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, vol. 290 (3rd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2016-7, ISBN 978-0-387-98585-5, MR 0920369
- Feit, Walter (1974), "On integral representations of finite groups", Proceedings of the London Mathematical Society, Third Series, 29 (4): 633–683, doi:10.1112/plms/s3-29.4.633, ISSN 0024-6115, MR 0374248
- Finkelstein, Larry (1973), "The maximal subgroups of Conway's group C3 and McLaughlin's group", Journal of Algebra, 25: 58–89, doi:10.1016/0021-8693(73)90075-6, ISSN 0021-8693, MR 0346046
- Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs, vol. 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 0749038
- Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 0827219
- Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-03516-0, ISBN 978-3-540-62778-4, MR 1707296
- Wilson, Robert A. (2009), The finite simple groups., Graduate Texts in Mathematics 251, vol. 251, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-84800-988-2, ISBN 978-1-84800-987-5, Zbl 1203.20012