Crankset

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 68.78.132.31 (talk) at 13:42, 29 April 2009 (→‎Sizes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A Shimano Deore right crankset, showing crank arm, spider, three chainrings and chainring guard

The crankset, or chainset, is the component of a bicycle drivetrain that converts the reciprocating motion of the rider's legs into rotational motion used to drive the chain, which in turn drives the rear wheel. It consists of one or more sprockets, also called chainrings[1][2][3] or chainwheels[3] attached to the cranks or arms[4] to which the pedals attach. It is connected to the rider by the pedals, to the bicycle frame by the bottom bracket, and to the rear sprocket, cassette or freewheel via the chain.

Parts

Cranks

The two cranks, one on each side and usually mounted 180° out of phase, connect the bottom bracket axle to the pedals.

Sizes

A left crank attached with a cotter.

Bicycle cranks can vary in length to accommodate different sized riders. Major manufacturers typically offer crank lengths for adult riders from 165 mm to 180 mm long in 2.5 mm increments, with 170 mm cranks being the most common size. A few small specialty manufacturers also make bicycle cranks in a number of sizes smaller than 165 mm and longer than 180 mm. While logic would suggest that riders with shorter legs should use proportionally shorter cranks and those with longer legs should use proportionally longer cranks, this is not universally accepted. Very few scientific studies have examined the effect of crank length on sustained cycling performance and the studies' results have been mixed. A detailed exploration of the logical basis of proportional bicycle crank length can be found on the web here. Several formulas exist to calculate appropriate crank length for various riders, one from the most often cited crank length website can be found here. However, the exact length an individual cyclist feels most comfortable with may vary depending on the rider's cycling specialty. Bicycle riders typically prefer shorter cranks for higher cadence cycling such as criterium and track racing, while riders typically prefer longer cranks for lower cadence cycling such as time trial racing and mountain biking.

Materials

Cranks are constructed of either an aluminum alloy, titanium, carbon fiber, chromoly steel, or some less expensive steel. Tubular steel cranks (such as Tioga's Revolver) can be light and very strong, are usually found on bmx bikes, and are slowly finding their way to mountain bikes (Dirt jumping and Urban assault) . Aluminum cranks may be cast, hot forged or cold forged ("cold" in this context means the billet from which the crank is to be made is heated to a specified temperature well below the melting point, not room temperature). Cold forging gives the metal additional strength, and the cranks can therefore be made lighter without increasing the risk of breakage. Shimano "Hollowtech" aluminum cranks are made by forging the main arms around a hard steel insert which is then withdrawn, leaving an internal void to save weight. They are then welded up before final machining.

Attachments

To the bottom bracket
A one-piece crank as seen from the right side.

There are a variety of methods used to attach the crank to the bottom bracket axle or spindle.

  • Older crank use a wedge-shaped pin, called a cotter pin, for attachment to the bottom bracket spindle.
  • Newer cranks slide onto
    • a square tapered spindle. The taper is 2 degrees with respect to the centerline.[5] There are at least two non-interchangeable dimensions (Shimano and Campagnolo have competing standards in square taper, though most parts made by other manufacturers are to the Shimano standard), and two orientations: diamond and square.
    • a hexagonal tapered spindle (Tune components cranks are an example)
    • splined bottom bracket spindle with two prominent specifications, and numerous uncommon ones. The ISIS spline may be the most common splined standard as it was decided on and supported by several companies. Shimano's Octalink is a common proprietary standard. It comes in two forms - version one for XTR, 105, Ultegra and Dura Ace and version two for every other groupset such as XT, LX and Deore. Truvative and DMR also have their own proprietary spline interface standards.
The crankarms are pressed into place and prevented from squirming off via fretting by a bolt or nut installed into or onto the axle of the bottom bracket.[6] The head of the bolt or the nut sit inside a counterbore that is also threaded to accept a crank puller tool. The counterbore is often covered with a dust cover.
  • Even newer designs have the bottom bracket axle, usually hollow and larger diameter than is possible for BB's with bearings held inside the BB shell of a bike frame, for reduced weight and increased stiffness, permanently attached to the right crank ([Shimano] and others) or the left crank (Race Face). The left crank slides onto a spline and is tightened with one or more pinch bolts (Shimano) or is pressed onto a spline by a bolt on the BB axle axis (Race Face).
  • Some cranks have a many as 48 splines, such as Profile Design.
  • The latest from Campagnolo, called Ultra-TorqueTM, has each crank permanently attached to one half of the axle (called semi-axles) which then join in the middle of the bottom bracket with a Hirth joint and a bolt.[7]
  • Certain companies such as Cannondale (BB30 open standard, introduced in 2000) have made their own completely proprietary BB standards requiring changes in the BB shell of the bicycle frame in order to accommodate the bottom bracket/crank design. The open BB30 standard is gaining popularity on high end bicycle and component manufacturers (Zipp, Specialized, FSA).
  • Finally, many children's bikes and older, or less-expensive bikes have one-piece cranks where the two cranks and bottom bracket spindle are forged as one piece of steel (see photograph above).

See the bottom bracket article for more details.

To the pedals
Fracture of an aluminium crank. Bright: brittle fracture. Dark: fatigue fracture.

Crank arms have a threaded hole (or "eye") at their outboard end to accommodate the pedal spindle. Adult or multi-piece cranks have a 9/16 inch hole with 20 TPI (a combination that appears to be unique to this application). One-piece or children's cranks use a 1/2 inch hole. Some crank on children's bikes have more than one pedal hole so that the pedal can be moved to accommodate growth.

The right-side (usually the chain side) hole is right-hand threaded, and the left-side hole is left-hand (reverse) threaded to help prevent it from becoming unthreaded by an effect called precession.

Pedal spindles are hard steel, and gradually fret and erode the crankarm where the two meet. This can eventually be a cause of crank breakage, which commonly occurs at the pedal eye. Some manufacturers advise the use of a thin steel washer between the pedal and crank, but this is ineffective because the hard washer frets against the crank instead. A solution, suggested by Jobst Brandt, is to use a 45 degree taper at the surface where crank and pedal meet, as this would eliminate precession-induced fretting and loosening (it is already done for most automobile lug nuts for the latter reason). However, this would require manufacturers to change a well-established standard which currently allows most pedals to be fitted to most cranks.

Spider

On older styles, the spider—the multi-armed piece that connects the chainring to the bottom bracket axle—was a separate piece from the crank arm. The most common modern cranks have an integrated spider on the drive-side crank arm. However, Middleburn, TA, and Surly currently produce cranks with separate detachable spiders, enabling a wide variety of chainring patterns to be used with the same cranks.

Spiders usually have 4 or 5 arms, although some models have had as few as 3 and many as 10 arms with 6 having been popular in the past.[8]

Bolt circle diameter (BCD)

Many modern bicycles have removable chainrings, to allow for replacement when worn, or to change the gear ratio provided (although the change is limited).

The holes on the spider arms used for attaching a chainring can have a variety of dimensions, referred to as the bolt circle diameter, commonly abbreviated as BCD. This measurement is sometimes referred to as pitch-circle diameter (PCD). Cranks designed to mount one or two chainrings will almost always use a single bolt circle diameter. Cranks designed to mount three chainrings will almost always use two different bolt circle diameters; the larger to mount the two outer rings and the smaller to mount the inner ring. Most modern two-chainring cranks use either a 110mm or 130mm bolt circle diameter.

Bolt circle diameters of common "named" cranks:

Track
144 BCD (Gebhardt)
Road double
130 BCD (Shimano, Gebhardt and others), or 135 (Campagnolo)
Road triple
130/74 BCD (Shimano and others), or 135/74 BCD (Campagnolo)
Compact/touring double
110 BCD or (Campagnolo carbon 4x110/1x113 BCD, Gebhardt)
Compact/touring triple
110/74 BCD
Mountain bike (4 arm)
104/64 BCD (Gebhardt)
Mountain bike (5 arm standard)
110/74 BCD
Mountain bike (5 arm compact)
94/58 BCD

For an extensive list of bolt circle diameters and their applications, see Sheldon Brown's Bolt Circle Diameter Crib Sheet.

Chainrings

A Shimano chainring, detached from right crank

Chainrings (also called "chainwheels" or "sprockets", although sprocket is used this way mostly in the BMX community[3]) engage the chain to transfer power to the (usually rear) wheel. They usually have teeth spaced to engage every link of the chain as it passes over; however, in the past, some designs (called skip-tooth or inch-pitch) have had one tooth for every other link of the chain.[9]

Sizes

By convention, the largest chainring is outboard and the smallest is inboard. Chainrings vary in size from as few as 20 teeth to as many as 55 or potentially more.

Chainrings also come in several nominal widths:

  • 3/16" for old-time bikes (especially skip-tooth or inch-pitch), heavy duty BMX, Worksman, and exercise bikes
  • 1/8" for track, BMX, cruiser bikes, one-speed, three-speeds, and the rare derailleur bike.
  • 3/32" for road, hybrid, mtb bikes, single-speed and 5-, 6-, 7-speed freewheels.
  • 5/64" for any bike with 9- or 10-speed cassettes

Materials

Chainrings are constructed of either an aluminum alloy, titanium, steel, or carbon fiber.

Construction

Cheaper cranksets may have the chainrings welded or riveted directly to the crank arm or spider. More expensive sets have the chainrings bolted on so that they can be replaced if worn or damaged or to provide different gearing.

Replacement chainrings must be chosen with a bolt-hole count and spacing that matches the spider.

Chainrings designed for use with multi-chainring crank arms may have ramps or pins to aid in shifting. The middle chain ring, in the case of a triple crankset, usually has the most shaping to aid in shifting up and down. The smallest chainring usually has the least, if any shaping.

Variations

Tandem cranksets

On tandem bicycles the pedalling contribution of both riders is often combined and coordinated by the crank arms. There may be a second set of chain rings, often on the opposite side from the regular drive train, one on each crank set and connected by a separate chain. The most common implementation has both cyclists pedaling at exactly the same pace and usually in phase, although it is possible to configure the system for out-of-phase pedaling.

The most common tandem crankset is a set of four cranks. Both left cranks have spiders and chainrings to be connected by a timing chain, and only one of the right cranks has a spider for the drive chain.

There are tandem cranksets available called independent pedaling system cranksets, which allow each cyclist to pedal, or not, at their own pace.[10]

Chain guards

Some cranksets incorporate a chain guard that consists simply of a plastic or metal ring outboard of the largest chainring and slightly larger in diameter to help prevent the chain from touching or catching clothing. Bicycles that are going to be used in abusive applications, such as freeride and BMX, will often incorporate a very heavy-duty chain guard that is designed to protect the chainrings from physical damage caused by impact with fixed objects; also called 'bashguards', these commonly replace a third (large) chainring.

Chainguides

Some cranksets used for freeride and downhill mountain biking have a chainguide installed. A chainguide is a metal or plastic housing that keeps the chain on the chainrings during extreme maneuvers. Most chainguides are designed for only one front chainring, but there are a few available such as the E13 DRS. Chainguides include a channel on the top of the chainring to keep the chain in line (for models designed for one front chainring) and a roller or sprocket on the bottom to help keep the chain engaged with the chainring. These are almost always used in conjunction with bashgurads.

Freewheeling cranksets

Some cranksets have been produced that incorporate a ratcheting mechanism to accommodate coasting. In this case, the chain continues to rotate with the rear wheel when the rider stops pedaling. The ultimate goal of freewheeling cranks is to allow the rider to shift the chain while coasting. Shimano's discontinued FF system (Front Freewheeling) is one of the more commonly seen examples, although it was one case of a solution in search of a problem.

Left-side-drive

This configuration consists of a left crank arm with a spider and chainring, and a right crank arm without a spider. This is exactly the opposite of a normal configuration. The special crankset must also be paired with a rear hub that can be driven from the left side. These hubs typically have left hand threads for a special freewheel, which is also threaded left hand and ratchets the opposite direction of a normal freewheel. If the freewheel and hub were threaded with right hand threads, the torque applied by pedaling would loosen and unthread the freewheel from the hub.

Left-side-drive is sometimes done with a fixed gear drivetrain. Because a correctly installed track cog can not be loosened from the hub no matter which way torque is applied, it can be used for left-side drive without requiring special left hand threaded parts.

Note that a normal right-side-drive crankset can not be installed backwards to create a left-side-drive bicycle because the threaded pedal holes at the end of the crank arms would be backwards of normal. Even though some kinds of pedals could simply be installed on the wrong sides to get around this issue, precession would tend to loosen them over time, causing the pedals to become detached and/or damaging the pedal threading in the crank arms.

Independent crank arms

At least one manufacturer offers a crankset in which the crank arms may rotate independently. This is supposed to aid in training by requiring each leg to move its own pedal in a full circle. See PowerCranks.

A different system mounts the chainrings on a bearing mounted eccentric to the BB with linkages connecting the right and left cranks (Pivoted around the BB axis) to the chainrings. The cranks can turn independently to each other on the BB axle. The purpose of this is to pull the upward crank past the top dead centre point before the lower crank reaches bottom dead centre, eliminating the dead centre in the pedalling action of normal cranks. See Rotor Cranks.

Ovoid chainrings

Several manufacturers have tried non-round chainrings, such as Shimano's Biopace and Rotor's Q-Rings[1]. These are designed to provide varying mechanical advantage at different points in the pedal stroke, effectively changing the gear ratio at different angles of rotation with the intention to be more ergonomic.

Their significant popularity in the late eighties to early nineties is best reflected in their widespread use by professional cyclists of that time. Since ca. 1998 almost no professional cyclists use non-round chainrings illustrating they are now understood by many to give the typical rider no advantage. However, one hold-out has been Team CSC Saxo Bank veteran Bobby Julich, and there are still a couple pro riders that use them as late at 2008. Notably Agritubel's Geoffrey Lequatre riding O.symmetric brand and Team CSC Saxo Bank's Carlos Sastre with Rotor's Q-Rings from his native Spain.

Compact crankset

In the context of mountain biking the term compact crankset refers to smaller triple cranksets, giving a small benefit in weight at the expense of increased wear and also giving the bike better clearance over obstacles. Typical ratios would be 22/32/44 teeth as opposed to 28/38/48 or 24/36/46 teeth. These would be used with smaller cassettes (Generally cassettes are available with 11 tooth minimum gear sizes for compact chainsets while standard chainsets were designed for cassettes with a 13 or 14 tooth top gear), giving the same overall ratio. Compact chainrings are the dominant standard for mountain bike cranks for the past decade or so.

In the context of road cycling, compact drivetrain typically refers to double cranksets with a smaller (usually 110mm) bolt circle diameter than the standard 130mm or Campagnolo's 135mm. As of 2006, all of the major component manufacturers such as Shimano and Campagnolo offer compact cranks in their midrange and high-end product lines. The compact crankset provides a compromise between the standard road double crankset (with 39/52 or 39/53 tooth chainrings) and the road triple (with 30/42/52 or 30/39/53 tooth chainrings). The compact crankset has two chainrings and typical ratios are 34/48, 34/50 and 36/50. This provides nearly the same lower gear ratios as a triple but without the need for a third chainring, a triple front derailleur and a long cage rear derailleur. Note that both Shimano and Campagnolo recommend and sell front derailleurs specifically designed for compact cranksets, claiming better shifting.

Compact gearing is not necessarily lower than standard gearing if cassettes with smaller sprockets (such as 11-23) are used. A high gear of 50x11 on a compact drivechain is actually slightly higher than the 53x12 of a standard set.

Compact gearing usually has a large percentage jump between the two chainrings. In balance, it may also allow small jumps in the rear by allowing a closer ratio cassette to be used, except for the 9% jump at the high end between the 11 and 12 tooth sprockets.

Bent crankarms

Marketed and known by a variety of names (Z-cranks, P.M.P cranks, etc.) non-straight crank arms have been introduced several times. However, "as long as the distance from crank axle to pedal is fixed, there is no pedaling advantage in using bent crank arms".[11] Possible differences from comparable straight crank arms include more weight and more flex.

Rotor Crank

Rotor is a trade name of a type of crank used in the transmission system of a bicycle.[12] [13] Unlike a standard pair of cranks that always remain at 180 degrees relative to each other, the Rotor system varies this angle through the circle of motion. The manufacturer claims that by reducing the time each crank spends in the top and bottom "dead spots", where little or no force is available from the leg, power output relative to heart rate is increased, amongst other claimed benefits.[14]

The Rotor crank was developed by Aeronautic Engineering School students in Madrid, Spain in 1995 and was later commercialised. Despite the potential benefits of the Rotor cranks over the traditional system, many competitive cyclists continue to use the traditional fixed system as offered by major manufacturers Campagnolo and Shimano, amongst others. One reason is that professional cyclists are under contract to use equipment supplied by the two major manufacturers.[15] The Cervélo TestTeam, however, has been using Rotor cranks.[16] Another factor is that a cyclist with more than one bike needs to change them all to the Rotor system, which can be expensive, and adaptation to the Rotor pedalling style can take around a week.

See also

References

  1. ^ "Bike Works NYC Chainring Archive". Retrieved 2007-10-21.
  2. ^ "Shimano Technical SG-X Chainrings". Retrieved 2007-10-21.
  3. ^ a b c Brown, Sheldon. "Sheldon Brown's Bicycle Glossary: Chainring". Sheldon Brown. Retrieved 2007-10-21.
  4. ^ Brown, Sheldon. "Sheldon Brown's Bicycle Glossary: Crank". Sheldon Brown. Retrieved 2007-10-21.
  5. ^ "Sheldon Brown: Square Taper Bottom Bracket Interchangeability". Retrieved 2008-08-28.
  6. ^ "Fretting damage in Bicycle Mechanics". Retrieved 2008-08-28.
  7. ^ "Campagnolo Ultra-Torque Crankset". 2006. Retrieved 2006-12-14.
  8. ^ "Bike Works NYC Chainring Archive". Retrieved 2007-01-16.
  9. ^ "Bike Works NYC Chainwheel Archive". 2006. Retrieved 2006-12-14.
  10. ^ "IPS Independent Pedaling System" (PDF). 2001. Retrieved 2006-12-14.
  11. ^ "Bike Works NYC Chainring Archive: Bent Crank Arms". Retrieved 2007-01-16.
  12. ^ "ROTOR: Fabricacion de Componentes para Bicicletas". {{cite web}}: Unknown parameter |Date= ignored (|date= suggested) (help); Unknown parameter |Publisher= ignored (|publisher= suggested) (help)
  13. ^ "The world center of cycling". CyclingNews.com. 2008-10-17.
  14. ^ "Sistema ROTOR". Usuarios.Lycos.es. 2008-10-17.
  15. ^ "The world center of Cycling". CyclingNews.com. 2008-10-17.
  16. ^ "New Cervélo TestTeam bikes for the cobbled Classics". bikeradar.com. 2009-04-04.
  • Barnett, John (2003). Barnett's Manual: Analysis and Procedures for Bicycle Mechanics (5th edition ed.). Boulder, CO: VeloPress. ISBN 1-931382-29-8. {{cite book}}: |edition= has extra text (help); Cite has empty unknown parameters: |accessyear=, |origmonth=, |accessmonth=, |month=, |chapterurl=, |origdate=, and |coauthors= (help)