Jump to content

Cyclobutanone

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by WildCation (talk | contribs) at 16:46, 25 February 2016 (Added CSID, UNII, InChIs to ChemBox). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cyclobutanone
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.405 Edit this at Wikidata
UNII
  • InChI=1S/C4H6O/c5-4-2-1-3-4/h1-3H2
    Key: SHQSVMDWKBRBGB-UHFFFAOYSA-N
  • O=C1CCC1
Properties
C4H6O
Molar mass 70.091 g·mol−1
Appearance Colorless liquid
Density 0.9547 g/cm3 (0 °C)[1]
Melting point −50.9 °C (−59.6 °F; 222.2 K)[1]
Boiling point 99.75 °C (211.55 °F; 372.90 K)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyclobutanone is an organic compound with molecular formula C4H6O. It is a four-membered cyclic ketone (cycloalkanone). Unlike cyclopropanone, the smallest but extremely volatile cyclic ketone, cyclobutanone is a stable liquid at room temperature and can be distilled.

Preparation

The Russian chemist Nikolai Kischner first reported the preparation of cyclobutanone in 1905.[2][3] He synthesized cyclobutanone in a low yield from cyclobutanecarboxylic acid in several reaction steps. This process is cumbersome and inefficient by today's standards.

Synthesis of cyclobutanone from cyclobutanecarboxylic acid

More efficient, high-yielding syntheses have since been developed.[4] One strategy involves degradation of five-carbon building blocks. For example, the oxidative decarboxylation of cyclobutanecarboxylic acid was improved by the use of other reagents and methods. A newer, more efficient preparation of cyclobutanone was found by P. Lipp and R. Köster in which a solution of diazomethane in diethyl ether is reacted with ketene.[5] This reaction is based on a ring expansion of the cyclopropanone intermediate initially formed, wherein molecular nitrogen is split off. The reaction mechanism was confirmed by a reaction using 14C-labeled diazomethane.[6]

Preparation of cyclobutanone from diazomethane and ketene via cyclopropanone

Another method for the synthesis of cyclobutanone is through a lithium-catalyzed rearrangement of oxaspiropentane, which is formed by epoxidation of the easily accessible methylenecyclopropane.[7][8]

Preparation of cyclobutanone by rearrangement

Cyclobutanone can also be prepared in a two step procedure by dialkylation of 1,3-dithiane with 1-bromo-3-chloropropane followed by deprotection to the ketone with mercuric chloride (HgCl2) and cadmium carbonate (CdCO3).[9]

Reactions

At about 350 °C, cyclobutanone decomposes into ethylene and ketene.[10] The activation energy for this [2+2] cycloreversion is 52 kcal/mol. The reversion reaction, the [2+2] cycloaddition of ketene and ethylene, has never been observed.

Decomposition of cyclobutanone

See also

Other cyclic ketones:

References

  1. ^ a b c CRC Handbook of Chemistry and Physics. Vol. 90. Boca Raton, FL: CRC Press.
  2. ^ N. Kishner (1905). "'Über die Einwirkung von Brom auf die Amide α-bromsubstituierter Säuren". Journal der Russischen Physikalisch-Chemischen Gesellschaft. 37: 103–105.
  3. ^ N. Kishner (1905). "Über das Cyklobutanon". Journal der Russischen Physikalisch-Chemischen Gesellschaft. 37: 106–109.
  4. ^ Dieter Seebach (1971). "Isocyclische Vierringverbindungen". In Houben, Weyl, and Müller (ed.). Methoden der Organischen Chemie. Vol. IV/4. Stuttgart: Georg Thieme Verlag.{{cite book}}: CS1 maint: multiple names: editors list (link)
  5. ^ P. Lipp und R. Köster (1931). "Ein neuer Weg zum Cyclobutanon". Berichte der Deutschen Chemischen Gesellschaft. 64: 2823–2825. doi:10.1002/cber.19310641112.
  6. ^ Semenow, Dorothy A.; Cox, Eugene F.; Roberts, John D. (1956). "Small-Ring Compounds. XIV. Radioactive Cyclobutanone from Ketene and Diazomethane-14C1". Journal of the American Chemical Society. 78 (13): 3221–3223. doi:10.1021/ja01594a069.
  7. ^ Sala�n, J. R.; Conia, J. M. (1971). "Oxaspiropentane. A rapid route to cyclobutanone". Journal of the Chemical Society D: Chemical Communications (23): 1579b. doi:10.1039/C2971001579B. {{cite journal}}: replacement character in |last1= at position 5 (help)
  8. ^ J. R. Salaün, J. Champion, J. M. Conia (1977). "Cyclobutanone from Methylenecyclopropane via Oxaspiropentane". Organic Syntheses. 57: 36. doi:10.15227/orgsyn.057.0036{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 320.
  9. ^ D. Seebach, A. K. Beck (1971). "Cyclic Ketones from 1,3-Dithiane: Cyclobutanone". Organic Syntheses. 51: 76. doi:10.15227/orgsyn.051.0076; Collected Volumes, vol. 6, p. 316.
  10. ^ Das, M. N.; Kern, F.; Coyle, T. D.; Walters, W. D. (1954). "The Thermal Decomposition of Cyclobutanone1". Journal of the American Chemical Society. 76 (24): 6271–6274. doi:10.1021/ja01653a013.