Cycloheptanone

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jytdog (talk | contribs) at 10:05, 31 May 2016 (→‎See also: remove unsourced observations by sock of blocked user Nuklear). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cycloheptanone
Names
IUPAC name
Cycloheptanone
Other names
Suberone
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.216 Edit this at Wikidata
  • InChI=1S/C7H12O/c8-7-5-3-1-2-4-6-7/h1-6H2 checkY
    Key: CGZZMOTZOONQIA-UHFFFAOYSA-N checkY
  • O=C1CCCCCC1
Properties
C7H12O
Molar mass 112.172 g·mol−1
Appearance Colorless liquid
Density 0.949 g/cm3 (20 °C)[1]
Boiling point 179 to 181 °C (354 to 358 °F; 452 to 454 K)[1]
Insoluble
Hazards
Flash point 56 °C (133 °F; 329 K)[2]
Related compounds
Cyclohexanone, Cyclooctanone, Tropinone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Cycloheptanone, (CH2)6CO, is a cyclic ketone also referred to as suberone. It is a colourless volatile liquid. Cycloheptanone is used as a precursor for the synthesis of pharmaceuticals.

Synthesis

In 1836, French chemist Jean-Baptiste Boussingault first synthesized cycloheptanone from the calcium salt of dibasic suberic acid. The destructive distillation of calcium suberate yields calcium carbonate and suberone:[3]

Ca(O2C(CH2)6CO2) → CaCO3 + (CH2)6CO

Cycloheptanone is still produced by the cyclization and decarboxylation of suberic acid or suberic acid esters. This reaction is typically conducted in the gas phase at 400–450 °C over alumina doped with zinc oxide or cerium oxide.[4]

Cycloheptanone is also produced by the reaction of cyclohexanone with sodium ethoxide and nitromethane. The resulting sodium salt of 1-(nitromethyl)cyclohexanol is added to acetic acid and shaken with hydrogen gas in the presence of W-4 Raney nickel catalyst. Sodium nitrite and acetic acid are then added to give cycloheptanone.[5]

Cycloheptanone is also prepared by ring expansion of cyclohexanone with diazomethane as the methylene source.[5]

Uses and reactions

Cycloheptanone has no direct applications, but is a precursor to other compounds. Bencyclane, a spasmolytic agent and vasodilator is produced from it, for example.[4] Pimelic acid is produced by the oxidative cleavage of cycloheptanone.[6] Dicarboxylic acids such as pimelic acid are useful for the preparation of fragrances and certain polymers.[7]

Several microorganisms, including Mucor plumbeus, Mucor racemosus, and Penicillium chrysogenum, have been found to reduce cycloheptanone to cycloheptanol. These microorganisms have been investigated for use in certain stereospecific enzymatic reactions.[8]

References

  1. ^ a b The Merck Index, 11th Edition, 2728
  2. ^ a b c Cycloheptanone at Sigma-Aldrich
  3. ^ Thorpe, T. E. (1912). A Dictionary of Applied Chemistry. LCCN 12009914.
  4. ^ a b Siegel, H.; Eggersdorfer, M. "Ketones". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a15_077. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  5. ^ a b Dauben, H. J. Jr.; Ringold, H. J.; Wade, R. H.; Pearson, D. L.; Anderson, A. G. Jr. (1954). "Cycloheptanone". Organic Syntheses. 34: 19{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 221.
  6. ^ Cornils, B.; Lappe, P. "Dicarboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_523.pub2. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  7. ^ "Dicarboxylic Acids". cyberlipids.org.
  8. ^ Lemiere, G. L.; Alderweireldt, F. C.; Voets, J. P. (1975). "Reduction of cycloalkanones by several microorganisms". Zeitschrift für Allgemeine Mikrobiologie. 15 (2): 89–92. doi:10.1002/jobm.19750150204.