Dark fibre

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Stealth Fiber Crew installing a 432-count dark fibre cable underneath the streets of Midtown Manhattan, New York City

A dark fibre or unlit fibre is an unused optical fibre, available for use in fibre-optic communication. Dark fibre originally referred to the potential network capacity of telecommunication infrastructure. Dark fibre may be leased from a network service provider.

Motivations[edit]

Much of the cost of installing cables is in the civil engineering work required. This includes planning and routing, obtaining permissions, creating ducts and channels for the cables, and finally installation and connection. This work usually accounts for most of the cost of developing fibre networks. For example, in Amsterdam's citywide installation of a fibre network, roughly 80% of the costs involved were labour, with only 10% being fibre.[1] It therefore makes sense to plan for, and install, significantly more fibre than is needed for current demand, to provide for future expansion and provide for network redundancy in case any of the cables fail.

Many fibre optic cable owners such as railroads and power utilities have always included additional fibres with the intention to lease these to other carriers.

During the dot-com bubble, a large number of telephone companies built optical fibre networks, each with the business plan of cornering the market in telecommunications by providing a network with sufficient capacity to take all existing and forecast traffic for the entire region served. This was based on the assumption that telecoms traffic, particularly data traffic, would continue to grow exponentially for the foreseeable future.[2]

The availability of wavelength-division multiplexing reduced the demand for fibre by increasing the capacity that could be placed on a single fibre by a factor of as much as 100. As a result, the wholesale price of data traffic collapsed. A number of these companies filed for bankruptcy protection as a result. Global Crossing[3] and Worldcom[4] are two high-profile examples in the US. According to Gerry Butters, the former head of Lucent's Optical Networking Group at Bell Labs, the amount of data that could be carried by an optical fibre was doubling every nine months at the time.[5][6][7][8] This progress in the ability to carry data over fiber reduced the need for more fibres.

Just as with the Railway Mania, the misfortune of one market sector became the good fortune of another, and this overcapacity created a new telecommunications market sector.

Market[edit]

For many years incumbent local exchange carriers would not sell dark fibre to end users, because they believed selling access to this core asset would cannibalize their other, more lucrative services. Incumbent carriers in the US were required to sell dark fibre to competitive local exchange carriers as unbundled network elements (UNE), but they have successfully lobbied to reduce these provisions for existing fibre, and eliminated it completely for new fibre placed for fibre to the premises (FTTP) deployments.[citation needed]

Fibre swaps between competitive carriers are quite common. This increases the reach of their networks in places where their competitor has a presence, in exchange for the provision of fibre capacity in places where that competitor has no presence. This is a practice known in the industry as "coopetition".

Meanwhile, other companies arose specializing as dark fibre providers. Dark fibre became more available when there was enormous overcapacity after the telecoms boom years of the late 1990s through 2001. The market for dark fibre tightened up with the return of capital investment to light up existing fibre, and with mergers and acquisitions resulting in a consolidation of dark fibre providers.

In the last decade, many higher education institutions have bought up large quantities of existing fibre optics sitting dormant. Starting in 1999, Larry Smarr, a technology director from the University of Illinois, connected the Urbana-Champaign campus to major academic, research, and telecommunications facilities in the Chicago area.[9] At the same time, other schools began creating large urban networks to directly connect their school campuses with hospitals and large telecommunications companies in metropolitan areas. Since then, US research and education institutions have been aggressively pursuing a revolutionary new means for delivering advanced networking capabilities.[9] With the plummeting prices of fibre due to the overabundance, the option to own fibre networks has reduced the competitive leasing of commercial circuits elsewhere. Experts say that a mile of dark fibre that in the past would have sold for $1,200, has sold for as low $200 or less. The downturn in telecommunications has offered significant savings to schools, since intercity networks may include several hundred to several thousand miles of fibre optic cable.[10][dubious ]

Networks[edit]

Dark fibre can be used to create a privately operated optical fiber network that is run directly by its operator over dark fibre leased or purchased from another supplier. This is opposed to purchasing bandwidth or leased line capacity on an existing network. Dark fibre networks may be used for private networking, or as Internet access or Internet infrastructure networking.

Dark fibre networks may be point-to-point, or use star self-healing ring or mesh topologies.

Because both ends of the link is controlled by the same organization, dark fibre networks can operate using the latest optical protocols using wavelength division multiplexing to add capacity where needed, and to provide an upgrade path between technologies. Many dark fibre metropolitan area networks use cheap Gigabit Ethernet equipment over CWDM, rather than expensive SONET ring systems.

They offer very high price-performance for network users who require high performance, such as Google, which has dark network capacities for video and search data,[11] or wish to operate their own network for security or other commercial reasons.

However, dark fibre networks are generally only available in high-population-density areas where fibre has already been laid, as the civil engineering costs of installing fibre to new locations is often prohibitive. For these reasons, dark fibre networks are typically run between data centers and other places with existing fibre infrastructure.

Variations[edit]

Managed dark fibre is a form of wavelength-division multiplexed access to otherwise dark fibre where a pilot signal is beamed into the fibre by the fibre provider for management purposes using a transponder tuned to the assigned wavelength. DWDM systems generally require central management because their closely spaced wavelengths are subject to disruption by signals on adjacent wavelengths that are not within tightly controlled parameters, especially if amplification is required for signal transmission over 100 km.

Virtual dark fibre using wavelength multiplexing allows a service provider to offer individual wavelengths ("lambdas" (λ) or "colors"), where access to a dark narrowband wavelength-division multiplexing (WDM) optical channel is provided over a wavelength division multiplexed fibre network that is managed at the physical level, but unlit by the network provider. This is typically done using coarse wavelength division multiplexing CWDM because the wider 20 nm spacing of the wavebands makes these systems much less susceptible to interference.

See also[edit]

References[edit]

  1. ^ Wagter, Herman (2010-03-19). "How Amsterdam was wired for open access fibre". Ars Technica. Retrieved 2013-05-11.
  2. ^ Odlyzko, Andrew (2010-09-06). "Bubbles, gullibility, and other challenges for economics, psychology, sociology, and information sciences". First Monday. 15 (9). Retrieved 2013-05-11.
  3. ^ "Form 8-K: Global Crossing Ltd". Securities and Exchange Commission. 2002-01-28. Retrieved 2013-05-11.
  4. ^ "In re: WorldCom, Inc., et al. - WorldCom Chapter 11 bankruptcy, Case No. 02-15533 (AJG)" (PDF). 2002-11-04. Retrieved 2013-05-11.
  5. ^ "Gerald Butters Profile". Forbes. Archived from the original on 2007-12-17. Retrieved 2013-05-11.
  6. ^ "Gerry Butters". Forbes. Archived from the original on 2008-01-28. Retrieved 2013-05-11.
  7. ^ "Board of Directors - Gerald Butters". LAMBDA Optical Systems. 2006. Retrieved 2013-05-11.
  8. ^ Robinson, Gail (2000-09-26). "Speeding net traffic with tiny mirrors". EE Times. Retrieved 2013-05-11.
  9. ^ a b Corbató, Steve; Cotter, Steve (May–June 2005). "Dark Fibre: Shining a New Light". EDUCAUSE Review. 40 (3): 68–69. Retrieved 2013-05-11.[permanent dead link]
  10. ^ "?". Robert W. Van Houten Library.(registration required)
  11. ^ Markoff, John (1 March 2010). "Scientists Strive to Map the Shape-Shifting Net". The New York Times. Retrieved 27 July 2010.