Diisopropyl ether

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Diisopropyl ether
Preferred IUPAC name
Other names
Diisopropyl oxide
3D model (JSmol)
ECHA InfoCard 100.003.237
EC Number 203-560-6
RTECS number TZ5425000
UN number 1159
Molar mass 102.177 g·mol−1
Appearance Colorless liquid
Odor Sharp, sweet, ether-like[1]
Density 0.725 g/ml
Melting point −60 °C (−76 °F; 213 K)
Boiling point 68.5 °C (155.3 °F; 341.6 K)
2 g/L at 20 °C
Vapor pressure 119 mmHg (20°C)[1]
-79.4·10−6 cm3/mol
GHS pictograms GHS02: FlammableGHS07: HarmfulGHS08: Health hazard
GHS signal word Danger
H225, H316, H319, H335, H336, H361, H371, H402, H412
P201, P202, P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P273, P280, P281, P303+361+353, P304+340, P305+351+338, P308+313, P309+311, P312, P332+313, P337+313, P370+378
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasolineHealth code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentineReactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calciumSpecial hazards (white): no codeNFPA 704 four-colored diamond
Flash point −28 °C (−18 °F; 245 K)
443 °C (829 °F; 716 K)
Explosive limits 1.4–7.9%
Lethal dose or concentration (LD, LC):
8470 mg/kg (rat, oral)[2]
5000-6500 mg/kg (rabbit, oral)[2]
38,138 ppm (rat)
30,840 ppm (rabbit)
28,486 ppm (rabbit)[2]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 500 ppm (2100 mg/m3)[1]
REL (Recommended)
TWA 500 ppm (2100 mg/m3)[1]
IDLH (Immediate danger)
1400 ppm[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Diisopropyl ether is secondary ether that is used as a solvent. It is a colorless liquid that is slightly soluble in water, but miscible with organic solvents. It is used as an extractant and an oxygenate gasoline additive. It is obtained industrially as a byproduct in the production of isopropanol by hydration of propene.[3] Diisopropyl ether is sometimes represented by the abbreviation "DIPE".


Whereas at 20 °C, diethyl ether will dissolve 1% by weight water, DIPE only dissolves half as much[citation needed]. It is used as a specialized solvent to remove or extract polar organic compounds from aqueous solutions, e.g. phenols, ethanol, acetic acid. DIPE is used as an antiknock agent.


Diisopropyl ether can form explosive peroxides upon standing in air for long periods. This reaction proceeds more easily than for ethyl ether, due to the secondary carbon next to the oxygen atom. Antioxidants can be used to prevent this process. The stored solvent should therefore be tested for the presence of peroxides more often (recommended once every 3 months for diisopropyl ether vs. once every 12 months for ethyl ether[4]). Peroxides may be removed by shaking the ether with a solution of iron(II) sulfate. For safety reasons, methyl tert-butyl ether is often used as an alternative solvent.

See also[edit]


  1. ^ a b c d e NIOSH Pocket Guide to Chemical Hazards. "#0362". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b c "Isopropyl ether". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Michael Sakuth, Thomas Mensing, Joachim Schuler, Wilhelm Heitmann, Günther Strehlke, Dieter Mayer ³Ethers, Aliphatic² Ullmann's Encyclopedia of Industrial Chemistry 2010, Wiley-VCH, Weinheim. doi:10.1002/14356007.a10_023.pub2
  4. ^ http://www.ccohs.ca/oshanswers/chemicals/organic/organic_peroxide.html

External links[edit]