Jump to content

Draft:Dario Gil

From Wikipedia, the free encyclopedia
National Science Board Chair Darío Gil (left) and NSB member Wanda Ward at a meeting of the NSB in May 2024. (NSF) Languages: Spanish, English, Italian, French Boards: National Science Board (NSB)[1] * New York Hall of Science (NYSCI)[2] * Canadian Institute for Advanced Research (CIFAR) President Research Council [3] * Semiconductor Industry Association (SIA)[4]. * Center for Strategic and International Studies (CSIS)[5]. * Rensselaer Polytechnic Institute (RPI)[6]. * New York Academy of Sciences (NYAS).[7] * Research! America Committee [8] * MIT School of Engineering (Dean's Advisory Council)[9]

Dario Gil is a Spanish-American computer scientist and executive, leading the innovation efforts for IBM Research in areas including AI, cloud, quantum computing, and exploratory science.[10][11] He is the chair of the National Science Board (NSB), which oversees the National Science Foundation (NSF)[1], and co-chair of the Executive Board of the International Science Reserve. [12]

Gil is also the co-chair of the COVID-19 High-Performance Computing Consortium which brings together the federal government, industry, and academic leaders to provide access to the world’s most powerful high-performance computing resources in support of COVID-19 research[13] and led to creation of the National Strategic Computing Reserve.[14]

Early life and education

[edit]

Gil was born in Murcia, located in southeastern Spain but grew up in Madrid.[15] In the early 1990s, Gil came to the United States to finish high school at Los Altos High located in California near Palo Alto.[16] He went on to earn a B.S in Electrical Engineering from Stevens Institute of Technology and a Master's and Ph.D. in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology (MIT).[17]

Career

[edit]

Shortly after earning his doctorate in 2003[15], Gil joined International Business Machines Corporation (using the trademark IBM)[18] as a staff member of the research team. In 2017, he became co-chair of the MIT-IBM Watson AI Lab, focused on AI research.[19] In January 2021, he was appointed Senior Vice President and Director of IBM Research, serving as the 12th Director in its near 80-year history.[20][21]

His work at IBM has led to the publication of new developments in material science and computing such as creating the world’s first microchip with immersion lithography,[22] and building programmable quantum computers and making them universally available through the cloud.[23][24][25]

Honors and Recognitions

[edit]
  • National Academy of Engineering, 2024[26]
  • Académico de Honor, Academia Joven de España, 2024[27]
  • U.S. President appointee to PCAST [28] and NSB, 2024[1].
  • Inaugural commencement speaker of MIT School of Engineering and Schwarzman College of Computing Advanced Degree Ceremony, 2022[29]
  • Doctor Honoris Causa, Universidad de Alcalá, 2021[30]
  • Named one of 100 most influential Hispanic leaders in technology by HITEC, 2021[31]
  • Premio FIUM 2020[32]

Select Publications

[edit]
  • Bravyi, Sergey; Dial, Oliver; Gambetta, Jay M.; Gil, Darío; Nazario, Zaira (2022-10-26). "The future of quantum computing with superconducting qubits". Journal of Applied Physics. 132 [33]
  • S. Bravyi, O. Dial, J. Gambetta, D. Gil, and Z. Nazario, “The Future of Quantum Computing with Superconducting Qubits”, Journal of Applied Physics, 132, 2022. [34]
  • D.Gil. et al, “AI for Management: An Overview”, Book Chapter in “The Future of Management in an AI World”, January 2020.[35]
  • D.E Dillenberger, D. Gil, S.V. Nitta, M.B. Ritter, “Frontiers of Information Technology”, IBM Journal of Research and Development, Volume:55,  Issue: 5 (2011).[36]
  • K. Tian, A. Krasnoperova, D. Melville, A. Rosenbluth, D. Gil, J. Tirapu-Azpiroz, K. Lai, S. Bagheri, C. Chen, B. Morgenfeld, “Benefits and trade-offs of global source optimization in optical lithography”, Proc. SPIE 7274, Optical Microlithography XXII, 72740C, (2009).[37]
  • D. Gil, J. Tirapu-Azpiroz, R. Deschner, T. Brunner, C. Fonseca, J. Fullam, D. Corliss, K. Auschnitt, P. Vanoppen, “Characterization of imaging performance for immersion lithography at NA=0.93”, Proc. SPIE 6154, Optical Microlithography XIX, 615405, (2006).[38]
  • D. Gil et al, “First microprocessors printed with immersion lithography”, Microlithography World 14 (2), (2005).[39]
  • D. Gil, T. Bailey, D. Corliss, M. J. Brodsky, P. Lawson, M. Rutten, Z. Chen, N. Lustig, T. Nigussie, K. Petrillo, C. Robinson, “First microprocessors with immersion lithography”, Proc. SPIE 5754, Optical Microlithography XVIII, 119, (2005).[40]
  • D. Gil et al, “Immersion lithography: New opportunities for semiconductor manufacturing”, J. Vac. Sci. Technol. B, 22(6), 3431-3438, (2004).[41]
  • R. Menon, D. Gil, and H. I. Smith, “Experimental characterization of focusing by high-numerical-aperture zone plates,” J. Opt. Soc. Am. A, 23(3), 567-571 (2006).[42]
  • R. Menon, D. Gil, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A, 22(2), 342-345 (2005).[43]
  • R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Materials Today, 26-33, Feb 2005.[44]
  • D. Gil, R. Menon, and H. I. Smith, “The promise of diffractive optics in maskless lithography,” Microelectron. Eng., v. 73-74, 35-41 (2004)[45].
  • R. Menon, A. Patel, G. Barbastathis, D. Gil, and H. I. Smith, “Maskless zone-plate-array lithography (ZPAL): For enhanced creativity in nanostructures fabrication and research ,” Digest of papers: Microprocesses and Nanotechnology, 338 (2004).[46]
  • F.J. Castano, et al, “Metastable States in Magnetic Nanorings”, Physical Review B 67,  184425 (2003).[47]
  • R. Menon, D. Gil, D. J. D. Carter, A. Patel and H. I. Smith, “Zone-Plate Array Lithography (ZPAL): A maskless fast-turn-around system for Microoptic Device Fabrication,” MOEMS Display and Imaging Systems, Proc. SPIE v. 4984, 10-17 (2003).[48]
  • D. Gil, R. Menon and H. I. Smith, “The Case for Diffractive Optics in Maskless Lithography,” J. Vac. Sci. Technol. B, 21(6), 2810-2814, (2003).[49]
  • D. Gil, R. Menon and H. I. Smith, “Fabrication of High-Numerical Aperture Phase Zone Plates with a single Lithography Exposure and No Etching,” J. Vac. Sci. Technol. B, 21(6), 2956-2960 (2003).[50]
  • D. Gil, R. Menon, X. Tang, H. I. Smith, and D. J. D. Carter, “Parallel Maskless Optical Lithography for Prototyping, Low-Volume Production, and Research,” J. Vac. Sci. Technol. B, 20(6), 2597-2601 (2002).[51]
  • R. Menon, D. J. D. Carter, D. Gil, and H. I. Smith, “Zone-Plate-Array Lithography (ZPAL): Simulations for System Design,” X-Ray Microscopy: Proc. of the VIth International Conference on X-Ray Microscopy, 647-652, American Institute of Physics (2000).[52]
  • D. J. D. Carter, D. Gil, R. Menon, and H. I. Smith, “Maskless nanolithography with diffractive optics: Zone-Plate-Array lithography (ZPAL),” Trends in Optics and Photonics: Diffractive Optics and Micro-Optics. v. 41, 105-107, Opt. Soc. America (2000).[53]
  • H. I. Smith, D. J. D. Carter, M. Meinhold, E. E. Moon, M. H. Lim, J. Ferrera, M. Walsh, D. Gil, and R. Menon, “Soft X-rays for Deep Sub-100 nm Lithography, With and Without Masks,” Microelectron. Eng., 53, 77-84 (2000).[54]
  • D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, “Lithographic Patterning and Confocal Imaging with Zone Plates,” J. Vac. Sci. Technol. B, 18(6), 2881-2885 (2000)[55].
  • H. I. Smith, D. J. D. Carter, J. Ferrera, D. Gil, J. T. Hastings, M. H. Lim, M. Meinhold, R. Menon, E. E. Moon, C. A. Ross, T. Savas, M. Walsh, and F. Zhang, “Soft X-rays for Deep Sub-100 nm Lithography, With and Without Masks,” Proc. Materials Research Society Symposium, v. 584, 11-21 (2000).[56]
  • D. J. D. Carter, D. Gil, R. Menon, I. J. Djomehri, and H. I. Smith, “Zone-Plate Array Lithography (ZPAL): A New Maskless Approach,” Emerging Lithographic Technologies III: Proc. SPIE, v. 3676, 324-332 (1999).[57]
  • D. J. D. Carter, D. Gil, R. Menon, M. K. Mondol, H. I. Smith, and E. H. Anderson “Maskless Parallel Patterning with Zone-Plate Array Lithography (ZPAL),” J. Vac. Sci. Technol. B, 17(6), 3449-3452 (1999).[58]
  • T.E.Fischer and D. Gil, “Plenty of Room at the Bottom: Micromechanics – A new Era in Mechanical Engineering”, Tribology International , Vol.30, No.11, pp. 835-837 (1997)[59]

References

[edit]
  1. ^ a b c "National Science Board". National Science Board. Retrieved 2024-10-08.
  2. ^ "NYSCI Trustees". nysci. Retrieved 2024-10-16.
  3. ^ cifar.ca https://cifar.ca/leadership/. Retrieved 2024-10-16. {{cite web}}: Missing or empty |title= (help)
  4. ^ dcadmin (2018-05-18). "Dr. Darío Gil". Semiconductor Industry Association. Retrieved 2024-10-16.
  5. ^ "Darío Gil". www.csis.org. Retrieved 2024-10-16.
  6. ^ "Rensselaer Polytechnic Institute Welcomes IBM's Dr. Darío Gil to Its Board of Trustees | News". news.rpi.edu. Retrieved 2024-10-16.
  7. ^ "Darío Gil - NYAS". 2023-10-22. Retrieved 2024-10-16.
  8. ^ "About Us". Science & Technology Action Committee. Retrieved 2024-10-16.
  9. ^ "MIT School of Engineering | » Dean's Advisory Council". Mit Engineering. Retrieved 2024-10-16.
  10. ^ "IBM Newsroom - Dr. Darío Gil". IBM Newsroom. Retrieved 2024-10-16.
  11. ^ "Accelerated Discovery: AI and the Scientific Method". 19 January 2021.
  12. ^ "Who We Are". International Science Reserve. Retrieved 2024-10-08.
  13. ^ https://covid19-hpc-consortium.org/who-we-are
  14. ^ https://www.whitehouse.gov/wp-content/uploads/2021/10/National-Strategic-Computing-Reserve-Blueprint-Oct2021.pdf?utm_medium=email&utm_source=govdelivery
  15. ^ a b Colomé, Jordi Pérez (2019-02-26). "Meet the Spanish engineer behind the world's first quantum computer". EL PAÍS English. Retrieved 2024-10-08.
  16. ^ Colomé, Jordi Pérez (2019-02-26). "Meet the Spanish engineer behind the world's first quantum computer". EL PAÍS English. Retrieved 2024-10-16.
  17. ^ "National Science Board". National Science Board. Retrieved 2024-10-08.
  18. ^ "IBM100 - The Making of International Business Machines". 2018-10-05. Archived from the original on 2018-10-05. Retrieved 2024-10-08.
  19. ^ "IBM and MIT to pursue joint research in artificial intelligence, establish new MIT-IBM Watson AI Lab". MIT News | Massachusetts Institute of Technology. 2017-09-07. Retrieved 2024-10-08.
  20. ^ Colomé, Jordi Pérez (2019-02-26). "Meet the Spanish engineer behind the world's first quantum computer". EL PAÍS English. Retrieved 2024-10-16.
  21. ^ "Darío Gil". MIT-IBM Watson AI Lab. Retrieved 2024-10-08.
  22. ^ Gil, D.; Bailey, T.; Corliss, D.; Brodsky, M. J.; Lawson, P.; Rutten, M.; Chen, Z.; Lustig, N.; Nigussie, T.; Petrillo, K.; Robinson, C. (2005-05-12). "First microprocessors with immersion lithography". Optical Microlithography XVIII. SPIE. p. 10. doi:10.1117/12.598855. ISBN 978-0-8194-5734-9.
  23. ^ "Dario Gil". Tech:NYC. Retrieved 2024-10-16.
  24. ^ "IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation". Lab Manager. Retrieved 2024-10-16.
  25. ^ Gil, Dario; Green, William M. J. (2020). "1.4 The Future of Computing: Bits + Neurons + Qubits". 2020 IEEE International Solid- State Circuits Conference - (ISSCC). pp. 30–39. arXiv:1911.08446. doi:10.1109/ISSCC19947.2020.9062918. ISBN 978-1-7281-3205-1.
  26. ^ "National Academy of Engineering Elects 114 Members and 21 International Members". NAE Website. Retrieved 2024-10-16.
  27. ^ jmoguerza. "Darío Gil | Academia Joven de España" (in Spanish). Retrieved 2024-10-16.
  28. ^ "Trump Reconstitutes the President's Council of Advisors on Science and Technology". AIP. 2019-10-22. Retrieved 2024-10-16.
  29. ^ Terri (2022-04-29). "Dario Gil announced as inaugural MIT School of Engineering and Schwarzman College of Computing Advanced Degree Ceremony Speaker". MIT Schwarzman College of Computing. Retrieved 2024-10-16.
  30. ^ "Darío Gil". Universidad de Alcalá de Henares (in Spanish). Retrieved 2024-10-16.
  31. ^ "2021 HITEC 100 | Recognizing Hispanic Leaders | HITEC Awards". www.hitecglobal.org. Retrieved 2024-10-16.
  32. ^ "Ponencia de Darío Gil (galardonado con el Premio FIUM 2020)".
  33. ^ Bravyi, Sergey; Dial, Oliver; Gambetta, Jay M.; Gil, Darío; Nazario, Zaira (2022-10-28). "The future of quantum computing with superconducting qubits". Journal of Applied Physics. 132 (16). arXiv:2209.06841. Bibcode:2022JAP...132p0902B. doi:10.1063/5.0082975. ISSN 0021-8979.
  34. ^ Bravyi, Sergey; Dial, Oliver; Gambetta, Jay M.; Gil, Darío; Nazario, Zaira (2022-10-26). "The future of quantum computing with superconducting qubits". Journal of Applied Physics. 132 (16). Bibcode:2022JAP...132p0902B. doi:10.1063/5.0082975. ISSN 0021-8979.
  35. ^ Gil, Dario; Hobson, Stacy; Mojsilović, Aleksandra; Puri, Ruchir; Smith, John R. (2019-09-22), "AI for Management: An Overview", The Future of Management in an AI World, Cham: Springer International Publishing, pp. 3–19, doi:10.1007/978-3-030-20680-2_1, ISBN 978-3-030-20679-6, retrieved 2024-10-16
  36. ^ Dillenberger, D. E.; Gil, D.; Nitta, S. V.; Ritter, M. B. (September 2011). "Frontiers of information technology". IBM Journal of Research and Development. 55 (5): 1:1–1:13. doi:10.1147/jrd.2011.2163275. ISSN 0018-8646.
  37. ^ Tian, Kehan; Krasnoperova, Azalia; Melville, David; Rosenbluth, Alan E.; Gil, Dario; Tirapu-Azpiroz, Jaione; Lai, Kafai; Bagheri, Saeed; Chen, Chia-chen; Morgenfeld, Bradley (2009-03-13). "Benefits and trade-offs of global source optimization in optical lithography". In Levinson, Harry J.; Dusa, Mircea V. (eds.). Optical Microlithography XXII. Vol. 7274. SPIE. pp. 72740C. doi:10.1117/12.814305. {{cite book}}: |journal= ignored (help)
  38. ^ Gil, Dario; Tirapu-Azpiroz, Jaione; Deschner, Ryan; Brunner, Timothy; Fonseca, Carlos; Fullam, Jennifer; Corliss, Dan; Auschnitt, Kit; Vanoppen, Peter (2006-03-10). "Characterization of imaging performance for immersion lithography at NA=0.93". In Flagello, Donis G. (ed.). Optical Microlithography XIX. Vol. 6154. SPIE. p. 615405. doi:10.1117/12.656545. {{cite book}}: |journal= ignored (help)
  39. ^ Gil, D.; Bailey, T.; Corliss, D.; Brodsky, M. J.; Lawson, P.; Rutten, M.; Chen, Z.; Lustig, N.; Nigussie, T.; Petrillo, K.; Robinson, C. (2005-05-12). "First microprocessors with immersion lithography". Optical Microlithography XVIII. 5754. SPIE: 10. Bibcode:2005SPIE.5754..119G. doi:10.1117/12.598855. ISBN 978-0-8194-5734-9.
  40. ^ Gil, D.; Bailey, T.; Corliss, D.; Brodsky, M. J.; Lawson, P.; Rutten, M.; Chen, Z.; Lustig, N.; Nigussie, T.; Petrillo, K.; Robinson, C. (2005-05-12). "First microprocessors with immersion lithography". Optical Microlithography XVIII. 5754. SPIE: 10. Bibcode:2005SPIE.5754..119G. doi:10.1117/12.598855. ISBN 978-0-8194-5734-9.
  41. ^ Gil, Darío; Brunner, Timothy A.; Fonseca, Carlos; Seong, Nakgeuon; Streefkerk, Bob; Wagner, Christian; Stavenga, Marco (2004-11-01). "Immersion lithography: New opportunities for semiconductor manufacturing". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 22 (6): 3431–3438. Bibcode:2004JVSTB..22.3431G. doi:10.1116/1.1823431. ISSN 1071-1023.
  42. ^ Menon, Rajesh; Gil, Dario; Smith, Henry I. (2006-03-01). "Experimental characterization of focusing by high-numerical-aperture zone plates". Journal of the Optical Society of America A. 23 (3): 567. Bibcode:2006JOSAA..23..567M. doi:10.1364/josaa.23.000567. ISSN 1084-7529.
  43. ^ Menon, Rajesh; Gil, Dario; Barbastathis, George; Smith, Henry I. (2005-02-01). "Photon-sieve lithography". Journal of the Optical Society of America A. 22 (2): 342. Bibcode:2005JOSAA..22..342M. doi:10.1364/josaa.22.000342. ISSN 1084-7529.
  44. ^ Menon, Rajesh; Patel, Amil; Gil, Dario; Smith, Henry I. (February 2005). "Maskless lithography". Materials Today. 8 (2): 26–33. doi:10.1016/s1369-7021(05)00699-1. ISSN 1369-7021.
  45. ^ GIL, D (June 2004). "The promise of diffractive optics in maskless lithography". Microelectronic Engineering. 73–74: 35–41. doi:10.1016/j.mee.2004.02.012. ISSN 0167-9317.
  46. ^ Menon, R.; Patel, A.; Barbastathis, G.; Gil, D.; Smith, H.I. (2004). "Maskless zone-plate-array lithography (ZPAL): For enhanced creativity in nanostructures fabrication and research". Digest of Papers. 2004 International Microprocesses and Nanotechnology Conference, 2004. IEEE. p. 338. doi:10.1109/imnc.2004.245627. ISBN 4-99024720-5.
  47. ^ Castaño, F. J.; Ross, C. A.; Frandsen, C.; Eilez, A.; Gil, D.; Smith, Henry I.; Redjdal, M.; Humphrey, F. B. (2003-05-30). "Metastable states in magnetic nanorings". Physical Review B. 67 (18): 184425. Bibcode:2003PhRvB..67r4425C. doi:10.1103/physrevb.67.184425. ISSN 0163-1829.
  48. ^ Menon, Rajesh; Gil, Dario; Carter, David J. D.; Patel, Amil; Smith, Henry I. (2003-01-25). "Zone-plate-array lithography (ZPL): A maskless fast-turn-around system for microoptic device fabrication". In Johnson, Eric G. (ed.). Micromachining Technology for Micro-Optics and Nano-Optics. Vol. 4984. SPIE. p. 10. doi:10.1117/12.477856. {{cite book}}: |journal= ignored (help)
  49. ^ Gil, Dario; Menon, Rajesh; Smith, Henry I. (2003-11-01). "The case for diffractive optics in maskless lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 21 (6): 2810–2814. Bibcode:2003JVSTB..21.2810G. doi:10.1116/1.1629288. ISSN 1071-1023.
  50. ^ Gil, Dario; Menon, Rajesh; Smith, Henry I. (2003-11-01). "Fabrication of high-numerical-aperture phase zone plates with a single lithography exposure and no etching". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 21 (6): 2956–2960. Bibcode:2003JVSTB..21.2956G. doi:10.1116/1.1619957. ISSN 1071-1023.
  51. ^ Gil, Dario; Menon, Rajesh; Tang, Xudong; Smith, Henry I.; Carter, D. J. D. (2002-11-01). "Parallel maskless optical lithography for prototyping, low-volume production, and research". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 20 (6): 2597–2601. Bibcode:2002JVSTB..20.2597G. doi:10.1116/1.1526353. ISSN 1071-1023.
  52. ^ Menon, Rajesh (2000). "Zone-Plate-Array Lithography (ZPAL): Simulations for system design". AIP Conference Proceedings. 507. AIP: 647–652. Bibcode:2000AIPC..507..647M. doi:10.1063/1.1291225.
  53. ^ Carter, O. J. D.; Gil, Dario; Menon, Rajesh; Smith, Henry I. (2000). "Maskless nanolithography with diffractive optics: Zone- plate-array lithography (ZPAL)". Diffractive Optics and Micro-Optics. 14. Washington, D.C.: OSA: DTuC2. doi:10.1364/domo.2000.dtuc2. ISBN 1-55752-635-4.
  54. ^ Smith, Henry I.; Carter, D.J.D.; Meinhold, M.; Moon, E.E.; Lim, M.H.; Ferrera, J.; Walsh, M.; Gil, D.; Menon, R. (June 2000). "Soft x-rays for deep sub-100 nm lithography, with and without masks". Microelectronic Engineering. 53 (1–4): 77–84. doi:10.1016/s0167-9317(00)00269-0. ISSN 0167-9317.
  55. ^ Gil, Darı́o; Menon, Rajesh; Carter, D. J. D.; Smith, Henry I. (2000-11-01). "Lithographic patterning and confocal imaging with zone plates". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 18 (6): 2881–2885. Bibcode:2000JVSTB..18.2881G. doi:10.1116/1.1321293. ISSN 1071-1023.
  56. ^ Smith, Henry I.; Carter, D. J. D.; Ferrera, J.; Gil, D.; Goodberlet, J.; Hastings, J. T.; Lim, M. H.; Meinhold, M.; Menon, R.; Moon, E. E.; Ross, C. A.; Savas, T.; Walsh, M.; Zhang, F. (1999). "Soft X-Rays for Deep Sub-100 Nm Lithography, with and Without Masks". MRS Proceedings. 584. doi:10.1557/proc-584-11. ISSN 0272-9172.
  57. ^ Carter, David J. D.; Gil, Dario; Menon, Rajesh; Djomehri, Ihsan J.; Smith, Henry I. (1999-06-25). "Zone-plate array lithography (ZPAL): A new maskless approach". In Vladimirsky, Yuli (ed.). Emerging Lithographic Technologies III. Vol. 3676. SPIE. p. 324. doi:10.1117/12.351104. {{cite book}}: |journal= ignored (help)
  58. ^ Carter, D. J. D.; Gil, Dario; Menon, Rajesh; Mondol, Mark. K.; Smith, Henry I.; Anderson, Erik H. (1999-11-01). "Maskless, parallel patterning with zone-plate array lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 17 (6): 3449–3452. Bibcode:1999JVSTB..17.3449C. doi:10.1116/1.591028. ISSN 1071-1023.
  59. ^ "Book review". Tribology International. 30 (11): 836–837. November 1997. doi:10.1016/s0301-679x(97)00065-0. ISSN 0301-679X.