Jump to content

Elongated pentagonal rotunda

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tomruen (talk | contribs) at 19:24, 5 November 2015 (External links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Elongated pentagonal rotunda
TypeJohnson
J20 - J21 - J22
Faces2.5 triangles
2.5 squares
1+5 pentagons
1 decagon
Edges55
Vertices30
Vertex configuration10(42.10)
10(3.42.5)
2.5(3.5.3.5)
Symmetry groupC5v
Dual polyhedron-
Propertiesconvex
Net

In geometry, the elongated pentagonal rotunda is one of the Johnson solids (J21). As the name suggests, it can be constructed by elongating a pentagonal rotunda (J6) by attaching a decagonal prism to its base. It can also be seen as an elongated pentagonal orthobirotunda (J42) with one pentagonal rotunda removed.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

Formulae

The following formulae for volume and surface area can be used if all faces are regular, with edge length a:[2]

Dual polyhedron

The dual of the elongated pentagonal rotunda has 30 faces: 10 isosceles triangles, 10 rhombi, and 10 quadrilaterals.

Dual elongated pentagonal rotunda Net of dual

References

  1. ^ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
  2. ^ Stephen Wolfram, "Elongated pentagonal rotunda" from Wolfram Alpha. Retrieved July 22, 2010.