Epicycloid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by JOE SUPPLE BRUNS (talk | contribs) at 23:53, 2 December 2019 (→‎Equations: R = radius of large circle and 2r = diameter of small circle). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).

In geometry, an epicycloid or hypercycloid is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle. It is a particular kind of roulette.

Equations

If the smaller circle has radius r, and the larger circle has radius R = kr, then the parametric equations for the curve can be given by either:

or:

(Assuming the initial point lies on the larger circle.)

If k is a positive integer, then the curve is closed, and has k cusps (i.e., sharp corners, where the curve is not differentiable).

If k is a rational number, say k=p/q expressed as irreducible fraction, then the curve has p cusps. Radians is (0 to q * 2 PI) to close the curve. p and q are positive integers.

If k is an irrational number, then the curve never closes, and forms a dense subset of the space between the larger circle and a circle of radius R + 2r.

The distance OP from (x=0,y=0) origin to (the point on the small circle) varies up and down as

R <= OP <= (R + 2r)

R = radius of large circle and

2r = diameter of small circle

The epicycloid is a special kind of epitrochoid.

An epicycle with one cusp is a cardioid, two cusps is a nephroid.

An epicycloid and its evolute are similar.[1]

Proof

sketch for proof

We assume that the position of is what we want to solve, is the radian from the tangential point to the moving point , and is the radian from the starting point to the tangential point.

Since there is no sliding between the two cycles, then we have that

By the definition of radian (which is the rate arc over radius), then we have that

From these two conditions, we get the identity

By calculating, we get the relation between and , which is

From the figure, we see the position of the point on the small circle clearly.

See also

References

  • J. Dennis Lawrence (1972). A catalog of special plane curves. Dover Publications. pp. 161, 168–170, 175. ISBN 978-0-486-60288-2.

External links