From Wikipedia, the free encyclopedia
  (Redirected from FDTS)
Jump to: navigation, search
FDTS molecule structural formula.svg
IUPAC name
Other names
FDTS; Perfluorodecyltrichlorosilane; Perfluorooctylethyltrichlorosilane; 1H,1H,2H,2H-PERFLUORODECYLTRICHLOROSILANE; TRICHLORO-1H,1H,2H,2H-PERFLUORODECYLSILANE;
PubChem 123577
Molar mass 581.556114 [g/mol]
Appearance colourless liquid
Odor pungent, resembling HCl
Density 1.7 g/cm3
Boiling point 224 °C (435 °F; 497 K)
Solubility soluble in THF, THP, toluene, and other organic solvents [2]
Main hazards Moisture sensitive
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Perfluorodecyltrichlorosilane, also known as FDTS, is a colorless liquid chemical with molecular formula C10H4Cl3F17Si. FDTS molecules form self-assembled monolayers. They bond onto surfaces terminated with hydroxyl (-OH) groups, such as glass, ceramics, or SiO2 forming a regular covalent bond. It anchors on oxide surfaces with its tricholoro-silane group and attaches covalently.

Due to its heavily fluorinated tail group, an FDTS monolayer reduces surface energy. An FDTS monolayer deposition is relatively simple process, also known as molecular vapor deposition (MVD) It usually deposits from a vapor phase, at room to a near-to-room temperatures (50 °C), thus compatible with most substrates. Process is usually carried out in a vacuum chamber and with an assistance of a water vapor. Treated surfaces have a water repelent and a friction reduction properties.

For this reason is FDTS monolayer often applied to movable microparts of microelectromechanical systems (MEMS). An FDTS monolayer reduces surface energy and prevents sticking, so they are therefore used to coat micro- and nano-features on stamps for a nanoimprint lithography which is becoming a method of choice for making electronics, organic photodiodes, microfluidics and other.

Reduced surface energy is helpful for reduction of ejection force and demolding of polymer parts in an injection molding and FDTS coating was applied[3] onto some metallic injection molding molds and inserts.


  • Srinivasan, U.; Houston, M.R.; Howe, R.T.; Maboudian, R.; , "Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines," Microelectromechanical Systems, Journal of , vol.7, no.2, pp. 252–260, Jun 1998. doi: 10.1109/84.679393
  • Ruben B. A. Sharpe, Dirk Burdinski, Jurriaan Huskens, Harold J. W. Zandvliet, David N. Reinhoudt, and Bene Poelsema, Chemically Patterned Flat Stamps for Microcontact Printing, Journal of the American Chemical Society 2005 127 (29), 10344-10349.