Graphene quantum dot

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Graphene quantum dots (GQDs) represent single-layer to tens of layers of graphene of a size less than 30 nm. Due to its exceptional properties such as low toxicity, stable photoluminescence, chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.


The graphene quantum dot (GQD) is becoming an advanced multifunctional material for its unique optical, electronic,[1] spin,[2] and photoelectric properties induced by the quantum confinement effect and edge effect. GQDs are fragments limited in size, or domains, of a single-layer two-dimensional graphene crystal. Spectral studies have found that in almost all cases, GQDs are not single-layer graphene domains, but multi-layer formations containing up to 10 layers of reduced graphene oxide (rGO) from 10 to 60 nm in size.


Presently, several techniques have been developed to prepare GQDs; these techniques mainly include electron beam lithography, chemical synthesis, electrochemical preparation, graphene oxide (GO) reduction, C60 catalytic transformation, the microwave assisted hydrothermal method (MAH),[3][4] the Soft-Template method,[5] the hydrothermal method,[6][7][8] and the ultrasonic exfoliation method.[9]


GQDs have various important applications in bioimaging, cancer therapeutics,[10] temperature sensing,[11] drug delivery,[12] surfactants,[13] LEDs lighter converters, photodetectors, OPV solar cells, and photoluminescent material, biosensors fabrication.


  1. ^ Ritter, Kyle A; Lyding, Joseph W (2009). "The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons". Nature Materials. 8 (3): 235–42. Bibcode:2009NatMa...8..235R. doi:10.1038/nmat2378. PMID 19219032.
  2. ^ Güçlü, A. D; Potasz, P; Hawrylak, P (2011). "Electric-field controlled spin in bilayer triangular graphene quantum dots". Physical Review B. 84 (3). arXiv:1104.3108. Bibcode:2011PhRvB..84c5425G. doi:10.1103/PhysRevB.84.035425.
  3. ^ Tang, Libin; Ji, Rongbin; Cao, Xiangke; Lin, Jingyu; Jiang, Hongxing; Li, Xueming; Teng, Kar Seng; Luk, Chi Man; Zeng, Songjun; Hao, Jianhua; Lau, Shu Ping (2012). "Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots". ACS Nano. 6 (6): 5102–10. doi:10.1021/nn300760g. PMID 22559247.
  4. ^ Tang, Libin; Ji, Rongbin; Li, Xueming; Bai, Gongxun; Liu, Chao Ping; Hao, Jianhua; Lin, Jingyu; Jiang, Hongxing; Teng, Kar Seng; Yang, Zhibin; Lau, Shu Ping (2014). "Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots". ACS Nano. 8 (6): 6312–20. doi:10.1021/nn501796r. PMID 24848545.
  5. ^ Tang, Libin; Ji, Rongbin; Li, Xueming; Teng, Kar Seng; Lau, Shu Ping (2013). "Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots". Particle & Particle Systems Characterization. 30 (6): 523–31. doi:10.1002/ppsc.201200131.
  6. ^ Li, Xueming; Lau, Shu Ping; Tang, Libin; Ji, Rongbin; Yang, Peizhi (2013). "Multicolour light emission from chlorine-doped graphene quantum dots". Journal of Materials Chemistry C. 1 (44): 7308–13. doi:10.1039/C3TC31473A.
  7. ^ Li, Lingling; Wu, Gehui; Yang, Guohai; Peng, Juan; Zhao, Jianwei; Zhu, Jun-Jie (2013). "Focusing on luminescent graphene quantum dots: Current status and future perspectives". Nanoscale. 5 (10): 4015–39. Bibcode:2013Nanos...5.4015L. doi:10.1039/C3NR33849E. PMID 23579482.
  8. ^ Li, Xueming; Lau, Shu Ping; Tang, Libin; Ji, Rongbin; Yang, Peizhi (2014). "Sulphur doping: A facile approach to tune the electronic structure and optical properties of graphene quantum dots". Nanoscale. 6 (10): 5323–8. Bibcode:2014Nanos...6.5323L. doi:10.1039/C4NR00693C. PMID 24699893.
  9. ^ Zhao, Jianhong; Tang, Libin; Xiang, Jinzhong; Ji, Rongbin; Yuan, Jun; Zhao, Jun; Yu, Ruiyun; Tai, Yunjian; Song, Liyuan (2014). "Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors". Applied Physics Letters. 105 (11): 111116. Bibcode:2014ApPhL.105k1116Z. doi:10.1063/1.4896278.
  10. ^ Thakur, Mukeshchand; Kumawat, Mukesh Kumar; Srivastava, Rohit (2017). "Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications". RSC Advances. 7 (9): 5251–61. doi:10.1039/C6RA25976F.
  11. ^ Kumawat, Mukesh Kumar; Thakur, Mukeshchand; Gurung, Raju B; Srivastava, Rohit (2017). "Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular Nanothermometry". ACS Sustainable Chemistry & Engineering. 5 (2): 1382–91. doi:10.1021/acssuschemeng.6b01893.
  12. ^ Thakur, Mukeshchand; Mewada, Ashmi; Pandey, Sunil; Bhori, Mustansir; Singh, Kanchanlata; Sharon, Maheshwar; Sharon, Madhuri (2016). "Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system". Materials Science and Engineering: C. 67: 468–477. doi:10.1016/j.msec.2016.05.007. PMID 27287144.
  13. ^ Zeng, Minxiang; Wang, Xuezhen; Yu, Yi-Hsien; Zhang, Lecheng; Shafi, Wakaas; Huang, Xiayun; Cheng, Zhengdong (2016). "The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Miniemulsion Polymerization". Journal of Nanomaterials. 2016: 1. doi:10.1155/2016/6490383.