Jump to content

Heteroatom

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Alexander Davronov (talk | contribs) at 23:37, 4 July 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Pyridine is a heterocyclic compound and the heteroatom is nitrogen.

In chemistry, a heteroatom (from Ancient Greek heteros, "different", + atomos, "uncut") is any atom that is not carbon or hydrogen.[1] Usually, the term is used to indicate that non-carbon atoms have replaced carbon in the backbone of the molecular structure. Typical heteroatoms are nitrogen (N), oxygen (O), sulfur (S), phosphorus (P), chlorine (Cl), bromine (Br), and iodine (I).[2][3]

In the description of protein structure, in particular in the Protein Data Bank file format, a heteroatom record (HETATM) describes an atom as belonging to a small molecule cofactor rather than being part of a biopolymer chain.[4]

In the context of zeolites, the term heteroatom refers to partial isomorphous substitution of the typical framework atoms (silicon, aluminium, and phosphorus) by other elements such as beryllium, vanadium, and chromium.[5] The goal is usually to adjust properties of the material (e.g., Lewis acidity) to optimize the material for a certain application (e.g., catalysis).

References

  1. ^ Housecroft, Catherine E.; Constable, Edwin C. (2006). Chemistry - An introduction to organic, inorganic and physical chemistry (3rd ed.). Prentice Hall. p. 945. ISBN 0131275674.
  2. ^ Senda, Y. (2002). "Role of the heteroatom on stereoselectivity in the complex metal hydride reduction of six-membered cyclic ketones". Chirality. 14 (2–3): 110–120. doi:10.1002/chir.10051.
  3. ^ Walling, Cheves. "The Role of Heteroatoms in Oxidation". In Mayo, Frank R. (ed.). Oxidation of Organic Compounds. Advances in Chemistry. Vol. 75. pp. 166–173. doi:10.1021/ba-1968-0075.ch013. ISBN 9780841200760.
  4. ^ "Atomic Coordinate Entry Format Version 3.2". wwPDB. October 2008. Archived from the original on 2011-08-14. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  5. ^ Xu; Pang; Yu; Huo; Chen (2007). Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. p. 373. ISBN 0470822333.