Jump to content

Iodobenzene dichloride

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 14:26, 14 February 2016 (Chemical structure: clean up, replaced: Acta Cryst. → Acta Crystallogr. using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Iodobenzene dichloride[1]
Names
IUPAC name
(Dichloro-λ3-iodanyl)benzene
Other names
Iodosobenzene dichloride; Phenyliodine(III) dichloride; Phenyliodo dichloride; Phenyliodoso chloride; Phenylchloroiodonium chloride; Dichloroiodobenzene; Iododichlorobenzene
Identifiers
3D model (JSmol)
Abbreviations IBD
  • ClI(Cl)C1=CC=CC=C1
Properties
C6H5Cl2I
Molar mass 274.91 g·mol−1
Appearance Yellow solid
Density 2.2 g/cm3
Melting point 115 to 120 °C (239 to 248 °F; 388 to 393 K) (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Iodobenzene dichloride (PhICl2) is a complex of iodobenzene with chlorine. As a reagent for organic chemistry, it is used as an oxidant and chlorinating agent.

Chemical structure

Single-crystal X-ray crystallography has been used to determine its structure; as can be predicted by VSEPR theory, it adopts a T-shaped geometry about the central iodine atom.[2][3]

Preparation

Iodobenzene dichloride is not stable, and is not commonly available commercially. It is prepared by passing chlorine gas through a solution of iodobenzene in chloroform, from which it precipitates.[4] The same reaction has been reported at pilot plant scale (20 kg) as well.[5]

PhI + Cl2 → PhICl2

An alternate preparation involving the use of chlorine generated in situ by the action of sodium hypochlorite on hydrochloric acid has also been described.[6]

Reactions

Iodobenzene dichloride is hydrolyzed by basic solutions to give iodosobenzene (PhIO),[7] and is oxidized by sodium hypochlorite to give iodoxybenzene (PhIO2).[8]

In organic synthesis, iodobenzene dichloride is used as a reagent for the selective chlorination of alkenes[1] and alkynes.[9]

References

  1. ^ a b Phenyliodine(III) Dichloride, David W. Knight and Glen A. Russell, in Encyclopedia of Reagents for Organic Synthesis, 2001, John Wiley & Sons, Ltd doi:10.1002/047084289X.rp071
  2. ^ E. M. Archer and T. G. van Schalkwy (1953). "The crystal structure of benzene iododichloride". Acta Crystallogr. 6: 88–92. doi:10.1107/S0365110X53000193.
  3. ^ J. V. Carey, P. A. Chaloner, P. B. Hitchcock, T. Neugebauer, K. R. Seddon (1996). J. Chem. Res. 358: 2031–. {{cite journal}}: Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)
  4. ^ H. J. Lucas and E. R. Kennedy. "Iodobenzene dichloride". Organic Syntheses; Collected Volumes, vol. 3, p. 482.
  5. ^ Zanka, Atsuhiko; Takeuchi, Hiroki; Kubota, Ariyoshi (1998). "Large-Scale Preparation of Iodobenzene Dichloride and Efficient Monochlorination of 4-Aminoacetophenone". Organic Process Research & Development. 2 (4): 270. doi:10.1021/op980024e.
  6. ^ Zhao, Xue-Fei; Zhang, Chi (2007). "Iodobenzene Dichloride as a Stoichiometric Oxidant for the Conversion of Alcohols into Carbonyl Compounds; Two Facile Methods for Its Preparation". Synthesis. 2007 (4): 551. doi:10.1055/s-2007-965889.
  7. ^ H. J. Lucas, E. R. Kennedy, and M. W. Formo (1955). "Iodosobenzene". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 483.
  8. ^ M. W. Formo and John R. Johnson (1955). "Iodoxybenzene: B. Hypochlorite oxidation of iodobenzene dichloride". Organic Syntheses; Collected Volumes, vol. 3, p. 485.
  9. ^ Michael E. Jung and Michael H. Parker (1997). "Synthesis of Several Naturally Occurring Polyhalogenated Monoterpenes of the Halomon Class". Journal of Organic Chemistry. 62 (21): 7094–7095. doi:10.1021/jo971371. PMID 11671809.

Further reading