From Wikipedia, the free encyclopedia

JULES (Joint UK Land Environment Simulator) is a land-surface parameterisation model scheme describing soil-vegetation-atmosphere interactions.[1] JULES is a community led[citation needed] project which evolved from MOSES, the United Kingdom Meteorological Office (Met Office) Surface Exchange Scheme.[2] It can be used as a stand-alone model or as the land surface part of the Met Office Unified Model.[2] JULES has been used to help decide what tactics would be effective to help meet the goals of the Paris Agreement.[3] As well as use by the Met Office climate modelling group[4] a number of studies have cited JULES and used it as a tool to assess the effects of climate change, and to simulate environmental factors from groundwater to carbon in the atmosphere.[5][6][7][8][9]

JULES has been described as the most accurate global carbon budget model of net ecosystem productivity, because it has more years of data than other models.[10]


  1. ^ "Joint UK Land Environment Simulator (JULES)". Joint UK Land Environment Simulator (JULES). Retrieved 2020-08-19.
  2. ^ a b "Joint UK Land Environment Simulator (JULES)". Met Office. Retrieved 2020-08-19.
  3. ^ Phelan, Matthew (7 August 2018). "Meeting Paris Agreement Global Warming Goals May Require Lots More Forests". Inverse. Retrieved 2020-08-15.
  4. ^ "Climate impacts". Met Office. Retrieved 2020-08-19.
  5. ^ Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T. (October 2014). "JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator" (PDF). Geoscientific Model Development Discussions. 7 (5): 6773–6809. Bibcode:2014GMDD....7.6773O. doi:10.5194/gmdd-7-6773-2014.
  6. ^ Best, M. J.; Pryor, M.; Clark, D. B.; Rooney, G. G.; Essery, R. L. H.; Ménard, C. B.; Edwards, J. M.; Hendry, M. A.; Porson, A.; Gedney, N.; Mercado, L. M. (2011). "The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes". Geoscientific Model Development. 4 (3): 677–699. Bibcode:2011GMD.....4..677B. doi:10.5194/gmd-4-677-2011. hdl:20.500.11820/f4a1d33b-17bd-4b8b-8b72-c511ab7a5948. ISSN 1991-9603.
  7. ^ Yuan, Wenping; Zheng, Yi; Piao, Shilong; Ciais, Philippe; Lombardozzi, Danica; Wang, Yingping; Ryu, Youngryel; Chen, Guixing; Dong, Wenjie; Hu, Zhongming; Jain, Atul K. (2019-08-01). "Increased atmospheric vapor pressure deficit reduces global vegetation growth". Science Advances. 5 (8): eaax1396. Bibcode:2019SciA....5.1396Y. doi:10.1126/sciadv.aax1396. ISSN 2375-2548. PMC 6693914. PMID 31453338.
  8. ^ Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai (2016-02-12). "Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China". Scientific Reports. 6 (1): 20905. Bibcode:2016NatSR...620905Y. doi:10.1038/srep20905. ISSN 2045-2322. PMC 4751438. PMID 26867481.
  9. ^ Batelis, Stamatis-Christos; Rahman, Mostaquimur; Kollet, Stefan; Woods, Ross; Rosolem, Rafael (2020). "Towards the representation of groundwater in the Joint UK Land Environment Simulator". Hydrological Processes. 34 (13): 2843–2863. Bibcode:2020HyPr...34.2843B. doi:10.1002/hyp.13767. hdl:1983/dbebc317-eec9-4bf7-9ef7-08f8d7b28423. ISSN 1099-1085.
  10. ^ Davies-Barnard, Taraka; Meyerholt, Johannes; Zaehle, Sönke; Friedlingstein, Pierre; Brovkin, Victor; Fan, Yuanchao; Fisher, Rosie A.; Jones, Chris D.; Lee, Hanna; Peano, Daniele; Smith, Benjamin; Wårlind, David; Wiltshire, Andy J. (2020). "Nitrogen Cycling in CMIP6 Land Surface Models: Progress and Limitations" (PDF). Biogeosciences (Preprint). 17 (20): 5129. Bibcode:2020BGeo...17.5129D. doi:10.5194/bg-17-5129-2020.

External links[edit]