Jump to content

Jean-Claude Sikorav

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Nick Number (talk | contribs) at 15:18, 13 July 2017 (added birthdate from Wikidata). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Jean-Claude Sikorav

Jean-Claude Sikorav (born 21 June 1957) is a French mathematician. He is professor at the École Normale Supérieure de Lyon. He is a specialist in symplectic geometry.[1]

Main contributions

Sikorav is known for his proof, joint with François Laudenbach, of the Arnold conjecture for Lagrangian intersections in cotangent bundles,[2] as well as for introducing generating families in symplectic topology.

Selected publications

Sikorav is one of fifteen members of a group of mathematicians who published the book Uniformisation des surfaces de Riemann under the pseudonym of Henri Paul de Saint-Gervais.[3]

He has written the survey

  • Sikorav, Jean-Claude (1994), "Some properties of holomorphic curves in almost complex manifolds", Holomorphic curves in symplectic geometry, Progress in Mathematics, vol. 117, Basel: Birkhäuser, pp. 165–189, MR 1274929.

and research papers

  • Hofer, Helmut; Lizan, Véronique; Sikorav, Jean-Claude (1997), "On genericity for holomorphic curves in four-dimensional almost-complex manifolds", The Journal of Geometric Analysis, 7 (1): 149–159, doi:10.1007/BF02921708, MR 1630789.
  • Laudenbach, François; Sikorav, Jean-Claude (1985), "Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent", Inventiones Mathematicae, 82 (2): 349–357, doi:10.1007/BF01388807, MR 0809719.

Honors

Sikorav is a Chevalier of the Ordre des Palmes Académiques.

References

  1. ^ See here
  2. ^ Laudenbach, Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent, Invent. Math. 82 (1985), no. 2, 349–357
  3. ^ de Saint-Gervais, Henri Paul (2010), Uniformisation des surfaces de Riemann: Retour sur un théorème centenaire, ENS Éditions, Lyon, ISBN 978-2-84788-233-9, MR 2768303.