Johan van Veen

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Johan van Veen
Johan van Veen (1953).jpg
Johan van Veen (1953)
Born(1893-12-21)21 December 1893
Died9 December 1959(1959-12-09) (aged 65)
Cause of deathheart attack during train trip
Alma materDelft University of Technology
OccupationCivil engineer
Notable work
Delta Works

Johan van Veen (Uithuizermeeden, 21 December 1893 – The Hague, 9 December 1959) was a Dutch hydraulic engineer and is considered the father of the Delta Works.


Johan van Veen was born as the fifth child of seven in a farmers' family. He was the brother of Marie van Veen, married to the artist Johan Dijkstra. In 1913 after high school graduation, he started his studies in Delft at the Technische Hoogeschool van Delft. He studied civil engineering. In 1919 he graduated as "ingenieur" (=M.Sc. in engineering).[1]

Provincial Water Authority Drenthe[edit]

He started to work as an engineer for the Drainage Department of the Provincial Water Authority of the Province of Drenthe. The task of this department was to develop plans to improve drainage and road structure of the province in order to enlarge the agricultural yield and to transport the products in a more efficient way to the markets (in the western part of the Netherlands). During the Great War it had become evident that The Netherlands depended too strongly on food products from abroad. The years between the World Wars were focused on agriculture. In order to have solid grounds for such plans, the borders of watersheds were charted, discharge measurements were made and levelling out valleys and the adjacent higher grounds works were executed. He carried out these studies in cooperation with agricultural engineer F.P. Mesu (who graduated in Wageningen).[2]


In 1926 Van Veen left the Provincial Water Authority. From August 1926 to October 1928 he had worked in Surinam at the Surinaamse Bauxiet Maatschappij (Surinam Bauxite Company), a subsidiary of the later US company Alcoa in Moengo, Surinam.[3]


In 1929, after his return to the Netherlands, he held a position at Rijkswaterstaat (the Executive Agency of the Dutch Ministry of Infrastructure). He became Head of the newly created Research Department for Tidal Rivers and Estuaries. His first assignment was to improve the hydraulic conditions at Hellegat, a complicated bifurcation of estuary branches. He also developed a new method to calculate tides, an improvement of the formulas developed by Hendrik Lorentz on the closure of the Zuiderzee. He published his Ph.D. thesis on sand movement in the Strait of Dover (which was relevant for Dutch coastal morphology), based on extensive measurements in that area. He wrote many (Dutch) reports on the coasts, tidal movements, estuaries and salt intrusion. In the years before and during the Second World War, Johan van Veen executed many studies on the problem of salt intrusion into tidal rivers. During the War he had prepared a plan called "Verlandingsplan" to manipulate tidal rivers in such a way that quite some natural silting-up would take place, and that to reclaim this new land would be easy. Just after the war, he presented this plan again, but mainly because at that time the country focused rather not on reclaiming land, but on repairing war damage.[4]

Delta Plan[edit]

From 1937 onwards Van Veen warned about the deplorable condition of the Dutch flood defences. He stipulated that a disaster was imminent, but politically he found no support for his warnings. The main reason being that improvement of dikes would cost a lot of money, which was not available in The Netherlands just after the war (the country depended mainly on money from the Marshall Plan. He had already published a book in English on the history of Dutch Hydraulic Engineering (Dredge, Drain, Reclaim, the Art of a Nation) .[5] In later reprints of this book he added a chapter by "Dr. Cassandra" as he used this pseudonym, including these warnings. His final warning report was a study describing the risks, including a plan to improve the situation by closing some estuaries. This document was dated January 29, 1953. During the following night The Netherlands were struck by the biggest storm surge ever, the North Sea flood of February 1st, 1953. After the disaster a State Commission was installed (18 February 1953), Johan van Veen was appointed Secretary of the State Commission. In May 1953 the commission offered its first interim report, recommending immediate closure of the Hollandse IJssel with a storm surge barrier Flood barrier, and to implement Van Veen's plan to close the estuaries (the Delta Works). Eventually this work had been carried out; the final report of the commission was published in 1960, one year after Johan van Veen died. In The Netherlands Johan van Veen is remembered as the "father of the Delta Plan" and in England as "Master of the Floods".[6]


Johan van Veen has a number of inventions to his name. Notable is the Van Veen Grab Sampler, a device to take (disturbed) bed samples from the seabed (around 1930).[7] He is also the inventor of the pneumatic barrier to prevent salt intrusion (around 1940).[8] In 1930 he proved the analogy between electricity and water flow. From this principle he developed an analog computer to calculate tidal flow (electric analogon).[9] In the period 1944-1956 it had become operational. Later on this machine was updated and became the practical computer to calculate tidal flow and water levels in the Dutch Delta (to predict the effect of closure works, the Delta Works. This analog computer now bears the name Deltar.[10]


On May 5, 1927 Van Veen married Hendrika (Henny) Aalfs during his stay in Surinam. He had three children. Unfortunately their marriage was not very happy. Although he came from a Dutch Reformed Church family, he converted to Christian Science until 1937, following his sister Anna, who lived in the United States.[11] Van Veen suffered from a number of heart attacks. The first one in 1937 and later in 1948 a heavy one after his "four-island-plan" was rejected. In 1957 was his last, fatal attack in the train when on his way to a meeting regarding his plan of a new harbour near Delfzijl, the Eemshaven.[12]

Publications (in English)[edit]

For a full list of all his publications (mainly in Dutch) is referred to the Tresor of Dutch Hydraulic Engingeering.


  1. ^ Van der Ham (2003), ch. 1
  2. ^ Van der Ham (2003), ch. 2
  3. ^ Van der Ham (2003), ch. 3
  4. ^ Van der Ham (2003), ch. 4
  5. ^ Van Veen, Johan (1962). Dredge, Drain, Reclaim, the Art of a Nation. The Hague, Netherlands: Matinus Nijhoff. p. 200.
  6. ^ Van der Ham (2003), ch. 8
  7. ^ Van Veen (1936), p164-166
  8. ^ Van Veen (1941)
  9. ^ Van Veen (1937)
  10. ^ Rooijendijk 2009, p347
  11. ^ Van der Ham (2003), p24
  12. ^ Van der Ham (2003), p228


  • Rooijendijk, Cordula (2009). Waterwolven: een geschiedenis van stormvloeden, dijkenbouwers en droogmakers [waterwolves, a history of storm surges, dike builders and reclaimers] (in Dutch). Uitgeverij Atlas. ISBN 9789046703380.
  • Van der Ham, Willem (2003). Meester van de zee. Johan van Veen (1893-1959), waterstaatsingenieur [Master of the Sea. Johan van Veen (1893-1959), Engineer at Rijkswaterstaat] (in Dutch). Uitgeverij Balans. ISBN 9050185959.
  • Van Veen, Johan (1936). Onderzoekingen in de hoofden [Research in the Strait of Dover] (Thesis) (in Dutch). Utrecht University.
  • Van Veen, Johan (7 May 1937). "Getijstroomberekeningen met behulp van wetten analoog aan die van Ohm en Kirchhoff" [Calculation of tidal current using laws analog to those of Ohm and Kirchhoff]. De Ingenieur (in Dutch). 52 (19): B73–B81.
  • Van Veen, Johan (7 March 1941). "Twee middelen om het zoutbezwaar bij zeesluizen op te heffen" [Two methods to solve the salt-intrusion problems at navigation locks]. De Ingenieur (in Dutch). 56 (10): B33–B34.