Kepler-56b

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bibcode Bot (talk | contribs) at 01:18, 5 June 2018 (Adding 0 arxiv eprint(s), 0 bibcode(s), 0 doi(s), and updating 1 bibcode(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:Planetbox begin Template:Planetbox image Template:Planetbox star Template:Planetbox orbit Template:Planetbox character Template:Planetbox discovery Template:Planetbox reference Template:Planetbox end Kepler-56b (KOI-1241.02)[1] is an exoplanet located roughly 3,060 light years away. It is somewhat larger than Neptune[2] and orbits its parent star Kepler-56 and was discovered in 2012 by the Kepler Space Telescope.

Planetary orbit

Kepler-56b is about 0.1028 AU away from its host star[3] (about one-tenth of the distance between Earth to the Sun), making it even closer to its parent star than Mercury and Venus. It takes 10.5 days for Kepler-56b to complete a full orbit around Kepler-56.[3] Further research shows that Kepler-56b's orbit is about 45° misaligned to the host star's equator. Later radial velocity measurements have revealed evidence of a gravitational perturbation but currently it is not clear if it is a nearby star or a third planet (a possible Kepler-56d).

Both Kepler-56b and Kepler-56c will be devoured by their parent star in about 130 and 155 million years.[4] Even further research shows that it will have its atmosphere boiled away by intense heat from the star, and it will be stretched by the strengthening stellar tides.[4] The measured mass of Kepler-56b is about 30% as large as Neptune's mass, but its radius is roughly 70% as large as Neptune's. Therefore, Kepler-56b should have a hydrogen/helium envelope containing a significant fraction of its total mass.[5][6] Similarly to Kepler-11b and Kepler-11c, the envelope's light elements are susceptible to photo-evaporation caused by radiation from the central star. For example, it has been calculated that Kepler-11c lost over 50% of its hydrogen/helium envelope after formation.[7] However, the larger mass of Kepler-56b, compared to that of Kepler-11c, reduces the efficiency of mass loss.[7] Nonetheless, the planet may have been significantly more massive in the past and may keep losing mass in the future.

References

  1. ^ "KOI-1241.02". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2017-09-07.
  2. ^ "NASA Exoplanet Archive". NASA Exoplanet Archive. Operated by the California Institute of Technology, under contract with NASA.
  3. ^ a b Cite error: The named reference Huber was invoked but never defined (see the help page).
  4. ^ a b Charles Poladian (2014-06-03). "Cosmic Snack: Planets Kepler-56b And Kepler-56c Will Be Swallowed Whole By Host Star". International Business Times. Retrieved 2017-09-07.
  5. ^ Lissauer, J. J.; Hubickyj, O.; D'Angelo, G.; Bodenheimer, P. (2009). "Models of Jupiter's growth incorporating thermal and hydrodynamic constraints". Icarus. 199 (2): 338–350. arXiv:0810.5186. Bibcode:2009Icar..199..338L. doi:10.1016/j.icarus.2008.10.004.
  6. ^ D'Angelo, G.; Weidenschilling, S. J.; Lissauer, J. J.; Bodenheimer, P. (2014). "Growth of Jupiter: Enhancement of core accretion by a voluminous low-mass envelope". Icarus. 241: 298–312. arXiv:1405.7305. Bibcode:2014Icar..241..298D. doi:10.1016/j.icarus.2014.06.029.
  7. ^ a b D'Angelo, G.; Bodenheimer, P. (2016). "In Situ and Ex Situ Formation Models of Kepler 11 Planets". The Astrophysical Journal. 828 (1): id. 33. arXiv:1606.08088. Bibcode:2016ApJ...828...33D. doi:10.3847/0004-637X/828/1/33.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Cite error: A list-defined reference named "Gaia DR2" is not used in the content (see the help page).

Cite error: A list-defined reference named "EPE-Kepler56b" is not used in the content (see the help page).

Further reading

  • Steffen, Jason H; Fabrycky, Daniel C; Agol, Eric; et al. (20 August 2012). "Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability". Mon. Not. R. Astron. Soc. 428 (2): 1077. arXiv:1208.3499. Bibcode:2013MNRAS.428.1077S. doi:10.1093/mnras/sts090.

External links