Jump to content

List of recombinant proteins

From Wikipedia, the free encyclopedia

The following is a list of notable proteins that are produced from recombinant DNA, using biomolecular engineering.[1] In many cases, recombinant human proteins have replaced the original animal-derived version used in medicine. The prefix "rh" for "recombinant human" appears less and less in the literature. A much larger number of recombinant proteins is used in the research laboratory. These include both commercially available proteins (for example most of the enzymes used in the molecular biology laboratory), and those that are generated in the course specific research projects.

Human recombinants that largely replaced animal or harvested from human types

[edit]

Medicinal applications

[edit]

Research applications

[edit]
  • Ribosomal proteins: For the studies of individual ribosomal proteins, the use of proteins that are produced and purified from recombinant sources[2][3][4][5] has largely replaced those that are obtained through isolation.[6][7] However, isolation is still required for the studies of the whole ribosome.[8][9]
  • Lysosomal proteins: Lysosomal proteins are difficult to produce recombinantly due to the number and type of post-translational modifications that they have (e.g. glycosylation). As a result, recombinant lysosomal proteins are usually produced in mammalian cells.[10] Plant cell culture was used to produce FDA-approved glycosylated lysosomal protein-drug, and additional drug candidates.[11] Recent studies have shown that it may be possible to produce recombinant lysosomal proteins with microorganisms such as Escherichia coli and Saccharomyces cerevisiae.[12] Recombinant lysosomal proteins are used for both research and medical applications, such as enzyme replacement therapy.[13]

Human recombinants with recombination as only source

[edit]

Medicinal applications

[edit]

Animal recombinants

[edit]

Medicinal applications

[edit]

Bacterial recombinants

[edit]

Industrial applications

[edit]

Viral recombinants

[edit]

Medicinal applications

[edit]

Plant recombinants

[edit]

Research applications

[edit]

Industrial applications

[edit]
  • Laccases have found a wide range of application, from food additive and beverage processing to biomedical diagnosis, and as cross‐linking agents for furniture construction or in the production of biofuels.[30][36][37][38][39]
  • The tyrosinase‐induced polymerization of peptides offers facile access to artificial mussel foot protein analogues. Next generation universal glues can be envisioned that perform effectively even under rigorous seawater conditions and adapt to a broad range of difficult surfaces.[40]

See also

[edit]

References

[edit]
  1. ^ Young CL, Britton ZT, Robinson AS (May 2012). "Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications". Biotechnology Journal. 7 (5): 620–34. doi:10.1002/biot.201100155. PMID 22442034. S2CID 35209677.
  2. ^ Correddu D, Montaño López JJ, Vadakkedath PG, Lai A, Pernes JI, Watson PR, Leung IK (June 2019). "An improved method for the heterologous production of soluble human ribosomal proteins in Escherichia coli". Scientific Reports. 9 (1): 8884. Bibcode:2019NatSR...9.8884C. doi:10.1038/s41598-019-45323-8. PMC 6586885. PMID 31222068.
  3. ^ Parakhnevitch NM, Malygin AA, Karpova GG (July 2005). "Recombinant human ribosomal protein S16: expression, purification, refolding, and structural stability". Biochemistry. Biokhimiia. 70 (7): 777–81. doi:10.1007/s10541-005-0183-3. PMID 16097941. S2CID 9910425.
  4. ^ Malygin A, Baranovskaya O, Ivanov A, Karpova G (March 2003). "Expression and purification of human ribosomal proteins S3, S5, S10, S19, and S26". Protein Expression and Purification. 28 (1): 57–62. doi:10.1016/S1046-5928(02)00652-6. PMID 12651107.
  5. ^ Tchórzewski M, Boguszewska A, Abramczyk D, Grankowski N (February 1999). "Overexpression in Escherichia coli, purification, and characterization of recombinant 60S ribosomal acidic proteins from Saccharomyces cerevisiae". Protein Expression and Purification. 15 (1): 40–7. doi:10.1006/prep.1998.0997. PMID 10024468.
  6. ^ Collatz E, Ulbrich N, Tsurugi K, Lightfoot HN, MacKinlay W, Lin A, Wool IG (December 1977). "Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 40 S ribosomal subunit proteins Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29". The Journal of Biological Chemistry. 252 (24): 9071–80. doi:10.1016/S0021-9258(17)38346-1. PMID 925037.
  7. ^ Fogel S, Sypherd PS (August 1968). "Extraction and isolation of individual ribosomal proteins from Escherichia coli". Journal of Bacteriology. 96 (2): 358–64. doi:10.1128/JB.96.2.358-364.1968. PMC 252306. PMID 4877123.
  8. ^ Mehta P, Woo P, Venkataraman K, Karzai AW (2012). "Ribosome Purification Approaches for Studying Interactions of Regulatory Proteins and RNAs with the Ribosome". Bacterial Regulatory RNA. Methods in Molecular Biology. Vol. 905. pp. 273–89. doi:10.1007/978-1-61779-949-5_18. ISBN 978-1-61779-948-8. PMC 4607317. PMID 22736011.
  9. ^ Belin S, Hacot S, Daudignon L, Therizols G, Pourpe S, Mertani HC, et al. (December 2010). "Purification of ribosomes from human cell lines". Current Protocols in Cell Biology. Chapter 3: Unit 3.40. doi:10.1002/0471143030.cb0340s49. PMID 21154551. S2CID 23908342.
  10. ^ Migani D, Smales CM, Bracewell DG (May 2017). "Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells". Biotechnology Progress. 33 (3): 666–676. doi:10.1002/btpr.2455. PMC 5485175. PMID 28249362.
  11. ^ Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, et al. (October 2015). "Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience". Plant Biotechnology Journal. 13 (8): 1199–208. doi:10.1111/pbi.12428. PMID 26102075.
  12. ^ Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, et al. (2015). "Human recombinant lysosomal enzymes produced in microorganisms". Molecular Genetics and Metabolism. 116 (1–2): 13–23. doi:10.1016/j.ymgme.2015.06.001. PMID 26071627.
  13. ^ Solomon M, Muro S (September 2017). "Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives". Advanced Drug Delivery Reviews. 118: 109–134. doi:10.1016/j.addr.2017.05.004. PMC 5828774. PMID 28502768.
  14. ^ Inoue N, Takeuchi M, Ohashi H, Suzuki T (1995). "The production of recombinant human erythropoietin". Biotechnology Annual Review Volume 1. Vol. 1. pp. 297–313. doi:10.1016/S1387-2656(08)70055-3. ISBN 9780444818904. PMID 9704092.
  15. ^ Baigent G (May 2002). "Recombinant Interleukin-2 (rIL-2), aldesleukin". Journal of Biotechnology. 95 (3): 277–80. doi:10.1016/S0168-1656(02)00019-6. PMID 12007868.
  16. ^ Munafo A, Trinchard-Lugan I, Nguyen TX, Buraglio M (March 1998). "Comparative pharmacokinetics and pharmacodynamics of recombinant human interferon beta-1a after intramuscular and subcutaneous administration". European Journal of Neurology. 5 (2): 187–193. doi:10.1046/j.1468-1331.1998.520187.x. PMID 10210831. S2CID 221594104.
  17. ^ Pritchard J, Gray IA, Idrissova ZR, Lecky BR, Sutton IJ, Swan AV, et al. (November 2003). "A randomized controlled trial of recombinant interferon-beta 1a in Guillain-Barré syndrome". Neurology. 61 (9): 1282–4. doi:10.1212/01.WNL.0000092019.53628.88. PMID 14610140. S2CID 34461129.
  18. ^ Pozzilli C, Bastianello S, Koudriavtseva T, Gasperini C, Bozzao A, Millefiorini E, et al. (September 1996). "Magnetic resonance imaging changes with recombinant human interferon-beta-1a: a short term study in relapsing-remitting multiple sclerosis". Journal of Neurology, Neurosurgery, and Psychiatry. 61 (3): 251–8. doi:10.1136/jnnp.61.3.251. PMC 486547. PMID 8795595.
  19. ^ Bayne ML, Applebaum J, Chicchi GG, Hayes NS, Green BG, Cascieri MA (June 1988). "Expression, purification and characterization of recombinant human insulin-like growth factor I in yeast". Gene. 66 (2): 235–44. doi:10.1016/0378-1119(88)90360-5. PMID 3049246.
  20. ^ Jeha S, Kantarjian H, Irwin D, Shen V, Shenoy S, Blaney S, et al. (January 2005). "Efficacy and safety of rasburicase, a recombinant urate oxidase (Elitek), in the management of malignancy-associated hyperuricemia in pediatric and adult patients: final results of a multicenter compassionate use trial". Leukemia. 19 (1): 34–8. doi:10.1038/sj.leu.2403566. PMID 15510203. S2CID 13359871.
  21. ^ Juturu V, Wu JC (2012). "Microbial xylanases: engineering, production and industrial applications". Biotechnology Advances. 30 (6): 1219–27. doi:10.1016/j.biotechadv.2011.11.006. PMID 22138412.
  22. ^ Sumantha A, Larroche C, Pandey A (2006). "Microbiology and Industrial Biotechnology of Food-Grade Proteases: A Perspective". Food Technology and Biotechnology. 44: 211–220.
  23. ^ Maurer KH (August 2004). "Detergent proteases". Current Opinion in Biotechnology. 15 (4): 330–4. doi:10.1016/j.copbio.2004.06.005. PMID 15296930.
  24. ^ Li Y, McLarin MA, Middleditch MJ, Morrow SJ, Kilmartin PA, Leung IK (October 2019). "An approach to recombinantly produce mature grape polyphenol oxidase". Biochimie. 165: 40–47. doi:10.1016/j.biochi.2019.07.002. PMID 31283975. S2CID 195843308.
  25. ^ Derardja AE, Pretzler M, Kampatsikas I, Barkat M, Rompel A (September 2017). "Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.)". Journal of Agricultural and Food Chemistry. 65 (37): 8203–8212. doi:10.1021/acs.jafc.7b03210. PMC 5609118. PMID 28812349.
  26. ^ Katayama-Ikegami A, Suehiro Y, Katayama T, Jindo K, Itamura H, Esumi T (December 2017). "Recombinant expression, purification, and characterization of polyphenol oxidase 2 (VvPPO2) from "Shine Muscat" (Vitis labruscana Bailey × Vitis vinifera L.)". Bioscience, Biotechnology, and Biochemistry. 81 (12): 2330–2338. doi:10.1080/09168451.2017.1381017. PMID 29017399.
  27. ^ Marková E, Kotik M, Křenková A, Man P, Haudecoeur R, Boumendjel A, et al. (April 2016). "Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors". Journal of Agricultural and Food Chemistry. 64 (14): 2925–31. doi:10.1021/acs.jafc.6b00286. PMID 26961852.
  28. ^ Dirks-Hofmeister ME, Kolkenbrock S, Moerschbacher BM (2013). "Parameters that enhance the bacterial expression of active plant polyphenol oxidases". PLOS ONE. 8 (10): e77291. Bibcode:2013PLoSO...877291D. doi:10.1371/journal.pone.0077291. PMC 3804589. PMID 24204791.
  29. ^ Kampatsikas I, Bijelic A, Pretzler M, Rompel A (August 2017). "Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases". Scientific Reports. 7 (1): 8860. Bibcode:2017NatSR...7.8860K. doi:10.1038/s41598-017-08097-5. PMC 5562730. PMID 28821733.
  30. ^ a b Ba S, Vinoth Kumar V (November 2017). "Recent developments in the use of tyrosinase and laccase in environmental applications". Critical Reviews in Biotechnology. 37 (7): 819–832. doi:10.1080/07388551.2016.1261081. PMID 28330374. S2CID 24681877.
  31. ^ Tremblay J, Goulet MC, Michaud D (November 2019). "Recombinant cystatins in plants". Biochimie. 166: 184–193. doi:10.1016/j.biochi.2019.06.006. PMID 31194996. S2CID 189813855.
  32. ^ Kondo H, Abe K, Nishimura I, Watanabe H, Emori Y, Arai S (September 1990). "Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin-II". The Journal of Biological Chemistry. 265 (26): 15832–7. doi:10.1016/S0021-9258(18)55473-9. PMID 1697595.
  33. ^ Abe K, Kondo H, Arai S (1987). "Purification and Characterization of a Rice Cysteine Proteinase Inhibitor". Agricultural and Biological Chemistry. 51 (10): 2763–2768. doi:10.1080/00021369.1987.10868462.
  34. ^ Abe K, Emori Y, Kondo H, Suzuki K, Arai S (December 1987). "Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds". The Journal of Biological Chemistry. 262 (35): 16793–7. doi:10.1016/S0021-9258(18)45453-1. PMID 3500172.
  35. ^ Kunert KJ, van Wyk SG, Cullis CA, Vorster BJ, Foyer CH (June 2015). "Potential use of phytocystatins in crop improvement, with a particular focus on legumes". Journal of Experimental Botany. 66 (12): 3559–70. doi:10.1093/jxb/erv211. hdl:2263/49447. PMID 25944929.
  36. ^ Mate DM, Alcalde M (November 2017). "Laccase: a multi-purpose biocatalyst at the forefront of biotechnology". Microbial Biotechnology. 10 (6): 1457–1467. doi:10.1111/1751-7915.12422. PMC 5658592. PMID 27696775.
  37. ^ Tonin F, Rosini E, Piubelli L, Sanchez-Amat A, Pollegioni L (July 2016). "Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea". Protein Expression and Purification. 123: 60–9. doi:10.1016/j.pep.2016.03.011. PMID 27050199.
  38. ^ Osma JF, Toca-Herrera JL, Rodríguez-Couto S (September 2010). "Uses of laccases in the food industry". Enzyme Research. 2010: 918761. doi:10.4061/2010/918761. PMC 2963825. PMID 21048873.
  39. ^ Minussi RC, Pastore GM, Durán N (2002). "Potential applications of laccase in the food industry". Trends Food Sci. Technol. 13 (6–7): 205–216. doi:10.1016/S0924-2244(02)00155-3.
  40. ^ Horsch J, Wilke P, Pretzler M, Seuss M, Melnyk I, Remmler D, et al. (November 2018). "Polymerizing Like Mussels Do: Toward Synthetic Mussel Foot Proteins and Resistant Glues". Angewandte Chemie. 57 (48): 15728–15732. doi:10.1002/anie.201809587. PMC 6282983. PMID 30246912.
[edit]