From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

A nanogel is a nanoparticle composed of a hydrogel—a crosslinked hydrophilic polymer network. Nanogels are most often composed of synthetic polymers[1] or biopolymers which are chemically or physically crosslinked.[2] Nanogels are usually in the tens to hundreds of nanometers in diameter. Like hydrogels, the pores in nanogels can be filled with small molecules or macromolecules,[3] and their properties, such as swelling, degradation, and chemical functionality, can be controlled.[4]


Potential applications of nanogels include drug delivery agents, contrast agents for medical imaging, nanoactuators, and sensors.[2][5][6][7][8]

  • Nanogels with cross-linked structure provide a versatile platform for storage and release of proteins. It is a highly desirable method of loading and delivering active forms of proteins toward cells for remaining activity, enhancing stability, and avoiding potential immunogenicity of proteins.[9]
  • Nanogels composed of polyethylenimine (PEI) have been used to deliver anti-cancer compounds into cells.[10][11]
  • Nanogels composed of dextran have been developed for imaging tumor-associated macrophages with radionuclides and targeting the bone.[12][13]
  • A fluorescent nanogel thermometer was developed to measure temperatures to within 0.5 °C (0.90 °F) in living cells. The cell absorbs water when colder and squeezes the water out as its internal temperature rises; the relative quantity of water masks or exposes the fluorescence of the nanogel.[14]

Nanogels are not to be confused with Nanogel aerogel, a lightweight thermal insulator, or with nanocomposite hydrogels (NC gels), which are nanomaterial-filled, hydrated, polymeric networks that exhibit higher elasticity and strength relative to traditionally made hydrogels.


  1. ^ Bencherif, Sidi A.; Siegwart, Daniel J.; Srinivasan, Abiraman; Horkay, Ferenc; Hollinger, Jeffrey O.; Washburn, Newell R.; Matyjaszewski, Krzysztof (2009). "Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization". Biomaterials. 30 (29): 5270–8. doi:10.1016/j.biomaterials.2009.06.011. PMC 3632384. PMID 19592087.
  2. ^ a b Kabanov, Alexander V.; Vinogradov, Serguei V. (2009). "Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities". Angewandte Chemie International Edition. 48 (30): 5418–29. doi:10.1002/anie.200900441. PMC 2872506. PMID 19562807.
  3. ^ Lee, Hyukjin; Mok, Hyejung; Lee, Soohyeon; Oh, Yu-Kyoung; Park, Tae Gwan (2007). "Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels". Journal of Controlled Release. 119 (2): 245–52. doi:10.1016/j.jconrel.2007.02.011. PMID 17408798.
  4. ^ Hayashi, Hisato; Iijima, Michihiro; Kataoka, Kazunori; Nagasaki, Yukio (2004). "PH-Sensitive Nanogel Possessing Reactive PEG Tethered Chains on the Surface". Macromolecules. 37 (14): 5389–96. Bibcode:2004MaMol..37.5389H. doi:10.1021/ma049199g.
  5. ^ Fisher, Omar Zaire (August 2008). "Synthesis and Characterization of Polybasic Nanogels". Novel PH-Responsive Microgels and Nanogels as Intelligent Polymer Therapeutics (PhD Thesis). pp. 137–82. hdl:2152/17850. ISBN 978-0-549-74938-7.
  6. ^ Vinogradov, Serguei V (2010). "Nanogels in the race for drug delivery". Nanomedicine. 5 (2): 165–8. doi:10.2217/nnm.09.103. PMID 20148627.
  7. ^ Oh, Jung Kwon; Drumright, Ray; Siegwart, Daniel J.; Matyjaszewski, Krzysztof (2008). "The development of microgels/nanogels for drug delivery applications". Progress in Polymer Science. 33 (4): 448–77. doi:10.1016/j.progpolymsci.2008.01.002.
  8. ^ Raemdonck, Koen; Demeester, Joseph; De Smedt, Stefaan (2009). "Advanced nanogel engineering for drug delivery". Soft Matter. 5 (4): 707–715. Bibcode:2009SMat....5..707R. doi:10.1039/b811923f.
  9. ^ Ye, Yanqi; Yu, Jicheng; Gu, Zhen (2015). "Versatile Protein Nanogels Prepared by In Situ Polymerization". Macromolecular Chemistry and Physics. 217: 333–343. doi:10.1002/macp.201500296.
  10. ^ Vinogradov, S; Zeman, A; Batrakova, E; Kabanov, A (2005). "Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs". Journal of Controlled Release. 107 (1): 143–57. doi:10.1016/j.jconrel.2005.06.002. PMC 1357595. PMID 16039001.
  11. ^ Ganta, Chanran; Shi, Aibin; Battina, Srinivas K.; Pyle, Marla; Rana, Sandeep; Hua, Duy H.; Tamura, Masaaki; Troyer, Deryl (May 2008). "Combination of nanogel polyethylene glycol-polyethylenimine and 6(hydroxymethyl)-1,4-anthracenedione as an anticancer nanomedicine". Journal of Nanoscience and Nanotechnology. 8 (5): 2334–40. doi:10.1166/jnn.2008.294. PMC 2556214. PMID 18572646.
  12. ^ Keliher, Edmund J.; Yoo, Jeongsoo; Nahrendorf, Matthias; Lewis, Jason S.; Marinelli, Brett; Newton, Andita; Pittet, Mikael J.; Weissleder, Ralph (2011). "89Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging". Bioconjugate Chemistry. 22 (12): 2383–9. doi:10.1021/bc200405d. PMC 3244512. PMID 22035047.
  13. ^ Heller, Daniel A.; Levi, Yair; Pelet, Jeisa M.; Doloff, Joshua C.; Wallas, Jasmine; Pratt, George W.; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E.; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S.; Langer, Robert; Anderson, Daniel G. (2013). "Modular 'Click-in-Emulsion' Bone-Targeted Nanogels" (PDF). Advanced Materials. 25 (10): 1449–54. doi:10.1002/adma.201202881. PMC 3815631. PMID 23280931.
  14. ^ Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi (2009). "Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry". Journal of the American Chemical Society. 131 (8): 2766–7. doi:10.1021/ja807714j. PMID 19199610.

Further reading[edit]

  • Ye, Yanqi; Yu, Jicheng; Gu, Zhen (2015). "Versatile Protein Nanogels Prepared by In Situ Polymerization". Macromolecular Chemistry and Physics. 217: 333–343. doi:10.1002/macp.201500296.
  • Yan, Ming; Ge, Jun; Liu, Zheng; Ouyang, Pingkai (2006). "Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability". Journal of the American Chemical Society. 128 (34): 11008–9. doi:10.1021/ja064126t. PMID 16925402.
  • Reese, Chad E.; Mikhonin, Alexander V.; Kamenjicki, Marta; Tikhonov, Alexander; Asher, Sanford A. (2004). "Nanogel Nanosecond Photonic Crystal Optical Switching". Journal of the American Chemical Society. 126 (5): 1493–6. doi:10.1021/ja037118a. PMID 14759207.
  • Lee, Eun Seong; Kim, Dongin; Youn, Yu Seok; Oh, Kyung Taek; Bae, You Han (2008). "A Virus-Mimetic Nanogel Vehicle". Angewandte Chemie International Edition. 47 (13): 2418–21. doi:10.1002/anie.200704121. PMC 3118583. PMID 18236507.
  • Hasegawa, Urara; Nomura, Shin-Ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari (2005). "Nanogel-quantum dot hybrid nanoparticles for live cell imaging". Biochemical and Biophysical Research Communications. 331 (4): 917–21. doi:10.1016/j.bbrc.2005.03.228. PMID 15882965.
  • Du, Jin-Zhi; Sun, Tian-Meng; Song, Wen-Jing; Wu, Juan; Wang, Jun (2010). "A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery". Angewandte Chemie International Edition. 49 (21): 3621–6. doi:10.1002/anie.200907210. PMID 20391548.