Jump to content

Partition of an interval

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Mindmatrix (talk | contribs) at 21:15, 31 July 2011 (Reverted edits by 75.30.148.146 (talk) to last version by Hypergeek14). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a partition, P of an interval [a, b] on the real line is a finite sequence of the form

a = x0 < x1 < x2 < ... < xn = b.

Such partitions are used in the theory of the Riemann integral, the Riemann–Stieltjes integral and the regulated integral. Another partition of the given interval, Q, is defined as a refinement of the partition, P, when it contains all the points of P and possibly some other points as well; the partition Q is said to be “finer” than P. Given two partitions, P and Q, one can always form their common refinement, denoted P ∨ Q, which consists of all the points of P and Q, re-numbered in order.

The norm (or mesh) of the partition

x0 < x1 < x2 < ... < xn

is the length of the longest of these subintervals, that is

max{ |xixi−1| : i = 1, ..., n }.

As finer partitions of a given interval are considered, their mesh approaches zero and the Riemann sum based on a given partition approaches the Riemann integral.

A tagged partition is a partition of a given interval together with a finite sequence of numbers t0, ..., tn−1 subject to the conditions that for each i,

xi ≤ ti ≤ xi+1.

In other words, a tagged partition is a partition together with a distinguished point of every subinterval: its mesh is defined in the same way as for an ordinary partition. It is possible to define a partial order on the set of all tagged partitions by saying that one tagged partition is bigger than another if the bigger one is a refinement of the smaller one.

Suppose that together with is a tagged partition of , and that together with is another tagged partition of . We say that and together is a refinement of a tagged partition together with if for each integer with , there is an integer such that and such that for some with . Said more simply, a refinement of a tagged partition takes the starting partition and adds more tags, but does not take any away.

See also

References

  • Gordon, Russell A. (1994). The integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, 4. Providence, RI: American Mathematical Society. ISBN 0-8218-3805-9.