Jump to content

Phenylsulfinic acid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Dcirovic (talk | contribs) at 04:55, 24 May 2016 (Properties: clean up using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Phenylsulfinic acid
Structural formula of phenylsulfinic acid
Ball-and-stick model of the phenylsulfinic acid molecule
Names
Other names
phenyl sulfinic acid, benzene sulfinic acid, benzenesulfinic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.009.591 Edit this at Wikidata
  • InChI=1S/C6H6O2S/c7-9(8)6-4-2-1-3-5-6/h1-5H,(H,7,8) ☒N
    Key: JEHKKBHWRAXMCH-UHFFFAOYSA-N ☒N
  • InChI=1/C6H6O2S/c7-9(8)6-4-2-1-3-5-6/h1-5H,(H,7,8)
    Key: JEHKKBHWRAXMCH-UHFFFAOYAY
  • C1=CC=C(C=C1)S(=O)O
Properties
C6H6O2S
Molar mass 142.17 g·mol−1
Appearance Colorless prisms
Density 1.45 g/cm3
Melting point 83 to 84 °C (181 to 183 °F; 356 to 357 K)
Acidity (pKa) 2.76
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Phenylsulfinic acid is an organosulfur compound with the formula C6H5SO2H. It is a colorless or white crystalline solid that is usually stored in the form of its sodium salt. In aqueous solution it is strongly acidic and is easily oxidized in air. Phenylsulfinic acid and its esters are chiral.

Acidity

Although many sources report the pKa value as somewhere around 1.30,[1][2][3] these results are inconsistent. However, a reproducible method was developed by Filippo et al. in which the pKa was determined to be 2.764.[4] This is a strong acid compared to its corresponding carboxylic acid, benzoic acid (pKa = 4.2), but weak when compared to its corresponding sulfonic acid (pKa = -6.5).[5]

Preparation

Phenylsulfinic acid can be prepared in several ways, most easily through reduction of sulfonyl chlorides with zinc dust or iron.[1] However other starting materials can be used. Due to the air sensitivity of this compound it is often formed as a salt.

2 C6H5SO2Cl + 2 Zn → (C6H5SO2)2Zn +ZnCl2
(C6H5SO2)2Zn + Na2CO3 +NaOH → 2 C6H5SO2Na + ZnCO3

A convenient method is the reduction of the sulfonyl chloride or sulfonyl fluoride with sodium sulfite, producing the acid instead of a salt:[2]

C6H5SO2Cl + Na2SO3 + H2O → C6H5SO2H + NaCl + NaHSO4

Many other methods have been reported for production of sulfinic acids such as the use tin(II) chloride, or the Grignard reagent with sulfur dioxide.[3] The preparation of sulfinic acids by the oxidation of thiols is difficult due to overoxidation.

Properties

In sulfinic acids, sulfur has the +4 oxidation state. They are prone to oxidation to sulphonic acids as well as reduction via sulphenic acids (+2) to thiols.[1]

Sulphinic acid derivatives disproportionate in the presence of acid:[1]

2 PhSO2H → PhSO2SOPh + H2O
PhSO2SOPh → PhSO2• + PhSO → PhSO3SPh
PhSO3SPh + PhSO2H → PhSO3H + PhSO2SPh

When phenylsulfinic acid reacts with sulfur to give thiosulfinates and thiosulfinic acids.[6]

Use

The main use of phenylsulfinic acid is for the asymmetric synthesis of carbon-carbon bonds due to its ability to stabilize negative charges on an adjacent carbon atom. Phenylsulfinic acid has been a component for electroplating of palladium alloys.[7]

References

  1. ^ a b c d S. Patiai (1990). The Chemistry of Sulphinic Acids, Esters and Their Derivatives. New York: J. Wiley and Sons. ISBN 0-471-91918-7.
  2. ^ a b a) A. T. Fuller, I. M. Tonkin and J. Walker, J. Chem. Soc., 1945, 636; b) S. Smiles and C. M. Bere, "Organic Syntheses," Coll. Vol. I, ed. by A. H. Blatt, John Wiley and Sons, Inc., New York, 1948, p. 7; c) E. Bader and H. D. Hermann, Chem. Ber., 88, 46 (1955); d) M. Kulka, Can. J. Chem., 32, 601 (1954).
  3. ^ a b R. J. Cremlyn (1996). An Introduction to Organosulfur Chemistry. New York: J. Wiley and Sons. ISBN 0-471-95512-4.
  4. ^ De Filippo, D.; Momicchioli, F. (1969). "A study of benzenesulfinic and seleninic acids". Tetrahedron. 25 (23): 5733. doi:10.1016/S0040-4020(01)83080-5.
  5. ^ E. P. Serjeant, B. Dempsey. "Ionization Constants of Organic Acids in Solution" IUPAC Data, Series No. 23 (Pergamon Press, Oxford)
  6. ^ B. Zwanenburg; A.J. H. Klunder (1987). Perspectives in the Organic Chemistry of Sulfur. New York: Elsevier. ISBN 0-444-42739-2.
  7. ^ Chiang, Yunn Hui; Luloff, Jerome S.; Schipper, Edgar (1969). "Aminolyses of sulfinic acid derivatives". The Journal of Organic Chemistry. 34 (8): 2397. doi:10.1021/jo01260a031.