Satellite laser ranging

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Laser Ranging System of the geodetic observatory Wettzell, Bavaria

In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.[1]

Satellite laser ranging is a proven geodetic technique with significant potential for important contributions to scientific studies of the earth/atmosphere/ocean system. It is the most accurate technique currently available to determine the geocentric position of an Earth satellite, allowing for the precise calibration of radar altimeters and separation of long-term instrumentation drift from secular changes in ocean topography.

Its ability to measure the variations over time in Earth's gravity field and to monitor motion of the station network with respect to the geocenter, together with the capability to monitor vertical motion in an absolute system, makes it unique for modeling and evaluating long-term climate change by:[2]

  • providing a reference system for post-glacial rebound, plate tectonics, sea level and ice volume change[3]
  • determining the temporal mass redistribution of the solid earth, ocean, and atmosphere system[4]
  • determining Earth orientation parameters, such as Earth pole coordinates and length-of-day variations[5]
  • determining of precise satellite orbits for artificial satellites with and without active devices onboard[6][7]
  • monitoring the response of the atmosphere to seasonal variations in solar heating.[8]

SLR provides a unique capability for verification of the predictions of the theory of general relativity, such as the frame-dragging effect.

SLR stations form an important part of the international network of space geodetic observatories, which include VLBI, GPS, DORIS and PRARE systems. On several critical missions, SLR has provided failsafe redundancy when other radiometric tracking systems have failed.


Satellite Laser Ranging

Laser ranging to a near-Earth satellite was first carried out by NASA in 1964 with the launch of the Beacon-B satellite. Since that time, ranging precision, spurred by scientific requirements, has improved by a factor of a thousand from a few metres to a few millimetres, and more satellites equipped with retroreflectors have been launched.

Several sets of retroreflectors were installed on Earth's Moon as part of the American Apollo and Soviet Lunokhod space programs. These retroreflectors are also ranged on a regular basis (lunar laser ranging), providing a highly accurate measurement of the dynamics of the Earth/Moon system.

During the subsequent decades, the global satellite laser ranging network has evolved into a powerful source of data for studies of the solid Earth and its ocean and atmospheric systems. In addition, SLR provides precise orbit determination for spaceborne radar altimeter missions mapping the ocean surface (which are used to model global ocean circulation), for mapping volumetric changes in continental ice masses, and for land topography. It provides a means for subnanosecond global time transfer, and a basis for special tests of the Theory of General Relativity.

The International Laser Ranging Service was formed in 1998[9] by the global SLR community to enhance geophysical and geodetic research activities, replacing the previous CSTG Satellite and Laser Ranging Subcommission.


SLR data has provided the standard, highly accurate, long wavelength gravity field reference model which supports all precision orbit determination and provides the basis for studying temporal gravitational variations due to mass redistribution. The height of the geoid has been determined to less than ten centimeters at long wavelengths less than 1,500 km.

SLR provides mm/year accurate determinations of tectonic drift station motion on a global scale in a geocentric reference frame. Combined with gravity models and decadal changes in Earth rotation, these results contribute to modeling of convection in the Earth's mantle by providing constraints on related Earth interior processes. The velocity of the fiducial station in Hawaii is 70 mm/year and closely matches the rate of the background geophysical model.

List of satellites[edit]

List of passive satellites[edit]

Several dedicated laser ranging satellites were put in orbit:[10]

List of shared satellites[edit]

Several satellites carried laser retroreflectors, sharing the bus with other instruments:

See also[edit]


  1. ^ Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T. (October 2017). "Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging: Spin-Up of Topex". Earth and Space Science. 4 (10): 661–668. doi:10.1002/2017EA000329.
  2. ^ Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E. C.; Sośnica, K.; Bloßfeld, M. (November 2019). "Laser geodetic satellites: a high-accuracy scientific tool". Journal of Geodesy. 93 (11): 2181–2194. Bibcode:2019JGeod..93.2181P. doi:10.1007/s00190-019-01228-y. S2CID 127408940.
  3. ^ Zajdel, R.; Sośnica, K.; Drożdżewski, M.; Bury, G.; Strugarek, D. (November 2019). "Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS". Journal of Geodesy. 93 (11): 2293–2313. Bibcode:2019JGeod..93.2293Z. doi:10.1007/s00190-019-01307-0.
  4. ^ a b Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015). "Time variable Earth's gravity field from SLR satellites". Journal of Geodesy. 89 (10): 945–960. Bibcode:2015JGeod..89..945S. doi:10.1007/s00190-015-0825-1.
  5. ^ Sośnica, K.; Bury, G.; Zajdel, R.; Strugarek, D.; Drożdżewski, M.; Kazmierski, K. (December 2019). "Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS". Earth, Planets and Space. 71 (1): 20. Bibcode:2019EP&S...71...20S. doi:10.1186/s40623-019-1000-3.
  6. ^ Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław (December 2019). "Multi-GNSS orbit determination using satellite laser ranging". Journal of Geodesy. 93 (12): 2447–2463. Bibcode:2019JGeod..93.2447B. doi:10.1007/s00190-018-1143-1.
  7. ^ Strugarek, Dariusz; Sośnica, Krzysztof; Jäggi, Adrian (January 2019). "Characteristics of GOCE orbits based on Satellite Laser Ranging". Advances in Space Research. 63 (1): 417–431. Bibcode:2019AdSpR..63..417S. doi:10.1016/j.asr.2018.08.033. S2CID 125791718.
  8. ^ Bury, Grzegorz; Sosnica, Krzysztof; Zajdel, Radoslaw (June 2019). "Impact of the Atmospheric Non-tidal Pressure Loading on Global Geodetic Parameters Based on Satellite Laser Ranging to GNSS". IEEE Transactions on Geoscience and Remote Sensing. 57 (6): 3574–3590. Bibcode:2019ITGRS..57.3574B. doi:10.1109/TGRS.2018.2885845. S2CID 127713034.
  9. ^ Pearlman, Michael R.; Noll, Carey E.; Pavlis, Erricos C.; Lemoine, Frank G.; Combrink, Ludwig; Degnan, John J.; Kirchner, Georg; Schreiber, Ulrich (November 2019). "The ILRS: approaching 20 years and planning for the future". Journal of Geodesy. 93 (11): 2161–2180. Bibcode:2019JGeod..93.2161P. doi:10.1007/s00190-019-01241-1. S2CID 127335882.
  10. ^
  11. ^ Kucharski, Daniel; Kirchner, Georg; Otsubo, Toshimichi; Kunimori, Hiroo; Jah, Moriba K.; Koidl, Franz; Bennett, James C.; Lim, Hyung-Chul; Wang, Peiyuan; Steindorfer, Michael; Sośnica, Krzysztof (August 2019). "Hypertemporal photometric measurement of spaceborne mirrors specular reflectivity for Laser Time Transfer link model". Advances in Space Research. 64 (4): 957–963. Bibcode:2019AdSpR..64..957K. doi:10.1016/j.asr.2019.05.030. S2CID 191188229.
  12. ^ "Calsphere 1, 2, 3, 4". Retrieved 2016-02-13.
  13. ^ Hattori, Akihisa; Otsubo, Toshimichi (January 2019). "Time-varying solar radiation pressure on Ajisai in comparison with LAGEOS satellites". Advances in Space Research. 63 (1): 63–72. Bibcode:2019AdSpR..63...63H. doi:10.1016/j.asr.2018.08.010.
  14. ^ Lindborg, Christina. "Etalon". Russia and Navigation Systems. Federation of American Scientists. Retrieved 10 November 2012.
  15. ^ Sośnica, Krzysztof (1 August 2015). "LAGEOS Sensitivity to Ocean Tides". Acta Geophysica. 63 (4): 1181–1203. Bibcode:2015AcGeo..63.1181S. doi:10.1515/acgeo-2015-0032.
  16. ^ Krzysztof, Sośnica (1 March 2015). "Impact of the Atmospheric Drag on Starlette, Stella, Ajisai, and Lares Orbits". Artificial Satellites. 50 (1): 1–18. Bibcode:2015ArtSa..50....1S. doi:10.1515/arsa-2015-0001.
  17. ^ "Larets".
  18. ^
  19. ^ "NASA - NSSDCA - Spacecraft - Details". 1999-06-05. Retrieved 2016-02-13.
  20. ^ Sośnica, Krzysztof; Jäggi, Adrian; Thaller, Daniela; Beutler, Gerhard; Dach, Rolf (August 2014). "Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame" (PDF). Journal of Geodesy. 88 (8): 789–804. Bibcode:2014JGeod..88..789S. doi:10.1007/s00190-014-0722-z. S2CID 121163799.
  21. ^ a b c d Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E. C.; Sośnica, K.; Bloßfeld, M. (November 2019). "Laser geodetic satellites: a high-accuracy scientific tool". Journal of Geodesy. 93 (11): 2181–2194. Bibcode:2019JGeod..93.2181P. doi:10.1007/s00190-019-01228-y. S2CID 127408940.
  22. ^ Kazmierski, Kamil; Zajdel, Radoslaw; Sośnica, Krzysztof (October 2020). "Evolution of orbit and clock quality for real-time multi-GNSS solutions". GPS Solutions. 24 (4): 111. doi:10.1007/s10291-020-01026-6.
  23. ^ Sośnica, Krzysztof; Thaller, Daniela; Dach, Rolf; Steigenberger, Peter; Beutler, Gerhard; Arnold, Daniel; Jäggi, Adrian (July 2015). "Satellite laser ranging to GPS and GLONASS". Journal of Geodesy. 89 (7): 725–743. Bibcode:2015JGeod..89..725S. doi:10.1007/s00190-015-0810-8.
  24. ^ Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz (February 2018). "Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes". Journal of Geodesy. 92 (2): 131–148. Bibcode:2018JGeod..92..131S. doi:10.1007/s00190-017-1050-x.
  25. ^ Sośnica, Krzysztof; Zajdel, Radosław; Bury, Grzegorz; Bosy, Jarosław; Moore, Michael; Masoumi, Salim (April 2020). "Quality assessment of experimental IGS multi-GNSS combined orbits". GPS Solutions. 24 (2): 54. doi:10.1007/s10291-020-0965-5.
  26. ^ Sośnica, K.; Bury, G.; Zajdel, R. (16 March 2018). "Contribution of Multi‐GNSS Constellation to SLR‐Derived Terrestrial Reference Frame". Geophysical Research Letters. 45 (5): 2339–2348. Bibcode:2018GeoRL..45.2339S. doi:10.1002/2017GL076850. S2CID 134160047.
  27. ^ Strugarek, Dariusz; Sośnica, Krzysztof; Arnold, Daniel; Jäggi, Adrian; Zajdel, Radosław; Bury, Grzegorz; Drożdżewski, Mateusz (30 September 2019). "Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites". Remote Sensing. 11 (19): 2282. Bibcode:2019RemS...11.2282S. doi:10.3390/rs11192282.

Further reading[edit]

External links[edit]