Jump to content

Silicon tetraiodide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CheMoBot (talk | contribs) at 14:20, 17 July 2015 (Updating {{chembox}} (changes to verified fields - added verified revid - updated 'CASNo_Ref', 'Verifiedfields', 'verifiedrevid') per Chem/Drugbox validation (report errors or [[user talk:CheMoB...). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Silicon tetraiodide
Names
Other names
silicon tetraiodide
Tetraiodosilane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.355 Edit this at Wikidata
  • InChI=1S/I4Si/c1-5(2,3)4 checkY
    Key: CFTHARXEQHJSEH-UHFFFAOYSA-N checkY
  • InChI=1/I4Si/c1-5(2,3)4
    Key: CFTHARXEQHJSEH-UHFFFAOYAL
  • I[Si](I)(I)I
Properties
SiI4
Molar mass 535.7034 g/mol
Appearance white powder
Density 4.198 g/cm3
Melting point 120.5 °C (248.9 °F; 393.6 K)
Boiling point 287.4 °C (549.3 °F; 560.5 K)
insoluble
Solubility in organic solvents soluble
Structure
tetrahedral
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Flash point −18 °C (0 °F; 255 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Silicon tetraiodide is the chemical compound with the formula SiI4. It is a tetrahedral molecule with Si-I bond lengths of 2.432(5) Å.[1]

SiI4 is a precursor to silicon amides of the formula Si(NR2)4 (R = alkyl).[2] It has also been of interest in the manufacture and etching of silicon in microelectronics.

Reactions

The compound is stable to strong heating and can be stored for long periods at room temperature but must be kept dry as it reacts quickly with water and also reacts slowly with moisture in the air in a similar way to silicon tetrachloride. It can be made on a large scale by reaction of silicon or silicon carbide with iodine on heating to about 200 °C. Of more academic interest is the reaction of silane with iodine vapour at 130 - 150 °C, as this produces a series of compounds ranging from iodosilane SiH3I to diiodosilane SiH2I2 and triiodosilane SiHI3 as well. These compounds are colourless liquids at room temperature. [3]The last one can be readily distinguished from the similar carbon compound, iodoform which is a yellow solid at room temperature.

References

  1. ^ Kolonits, Maria; Hargittai, Magdolna (1998). Structural Chemistry. 9 (5): 349. doi:10.1023/A:1022462926682. {{cite journal}}: Missing or empty |title= (help)
  2. ^ Banerjee, Chiranjib; Wade, Casey R.; Soulet, Axel; Jursich, Gregory; McAndrew, James; Belot, John A. (2006). "Direct syntheses and complete characterization of halide-free tetrakis(dialkylamino)silanes". Inorganic Chemistry Communications. 9 (7): 761. doi:10.1016/j.inoche.2006.04.027.
  3. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.