Jump to content

Sister chromatids

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by SUM1 (talk | contribs) at 03:05, 29 January 2020 (Adding local short description: "Two identical copies of a chromosome joined at the centromere", overriding Wikidata description "Two identical copies of a chromatids" (Shortdesc helper)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The paternal (blue) chromosomal and the maternal (pink) chromosome are homologous chromosomes. Following chromosomal DNA replication, the blue chromosome is composed of two identical sister chromatids and the pink chromosome is composed of two identical sister chromatids. In mitosis, the sister chromatids separate into the daughter cells, but are now referred to as chromosomes (rather than chromatids) much in the way that one child is not referred to as a single twin.

A sister chromatid refers to the identical copies (chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the duplicated chromosome. A pair of sister chromatids is called a dyad. A full set of sister chromatids is created during the synthesis (S) phase of interphase, when all the chromosomes in a cell are replicated. The two sister chromatids are separated from each other into two different cells during mitosis or during the second division of meiosis.

Compare sister chromatids to homologous chromosomes, which are the two different copies of a chromosome that diploid organisms (like humans) inherit, one from each parent. Sister chromatids are by and large identical (since they carry the same alleles, also called variants or versions, of genes) because they derive from one original chromosome. An exception is towards the end of meiosis, after crossing over has occurred, because sections of each sister chromatid may have been exchanged with corresponding sections of the homologous chromatids with which they are paired during meiosis. Homologous chromosomes might or might not be the same as each other because they derive from different parents.

There is evidence that, in some species, sister chromatids are the preferred template for DNA repair.[1] Sister chromatid cohesion is essential for the correct distribution of genetic information between daughter cells and the repair of damaged chromosomes. Defects in this process may lead to aneuploidy and cancer, especially when checkpoints fail to detect DNA damage or when incorrectly attached mitotic spindles don't function properly.

Mitosis

Mitotic recombination is primarily a result of DNA repair processes responding to spontaneous or induced damages.[2][3] (Also reviewed in Bernstein and Bernstein, pp 220–221).[4] Homologous recombinational repair during mitosis is largely limited to interaction between nearby sister chromatids that are present in a cell subsequent to DNA replication but prior to cell division. Due to the special nearby relationship they share, sister chromatids are not only preferred over distant homologous chromatids as substrates for recominational repair, but have the capacity to repair more DNA damage than do homologs.[1]

Meiosis

Studies with the budding yeast Saccharomyces cerevisiae[5] indicate that inter-sister recombination occurs frequently during meiosis, and up to one-third of all recombination events occur between sister chromatids.

See also

References

  1. ^ a b Kadyk, Lc; Hartwell, Lh (Oct 1992). "Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae" (Free full text). Genetics. 132 (2): 387–402. ISSN 0016-6731. PMC 1205144. PMID 1427035.
  2. ^ Moynahan ME, Jasin M (2010). "Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis". Nat. Rev. Mol. Cell Biol. 11 (3): 196–207. doi:10.1038/nrm2851. PMC 3261768. PMID 20177395.
  3. ^ Symington LS, Rothstein R, Lisby M (2014). "Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae". Genetics. 198 (3): 795–835. doi:10.1534/genetics.114.166140. PMC 4224172. PMID 25381364.
  4. ^ Bernstein C, Bernstein H. (1991) Aging, Sex, and DNA Repair. Academic Press, San Diego. ISBN 978-0120928606 partly available at https://books.google.com/books?id=BaXYYUXy71cC&pg=PA3&lpg=PA3&dq=Aging,+Sex,+and+DNA+Repair&source=bl&ots=9E6VrRl7fJ&sig=kqUROJfBM6EZZeIrkuEFygsVVpo&hl=en&sa=X&ei=z8BqUpi7D4KQiALC54Ew&ved=0CFUQ6AEwBg#v=onepage&q=Aging%2C%20Sex%2C%20and%20DNA%20Repair&f=false
  5. ^ Goldfarb T, Lichten M (2010). "Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis". PLoS Biol. 8 (10): e1000520. doi:10.1371/journal.pbio.1000520. PMC 2957403. PMID 20976044.{{cite journal}}: CS1 maint: unflagged free DOI (link)