Jump to content

Sonority hierarchy

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by IceKarma (talk | contribs) at 23:15, 12 October 2018 (Sonority scale: ce). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:Manner of articulation A sonority hierarchy or sonority scale is a ranking of speech sounds (or phones) by amplitude. For example, if one says the vowel [a], they will produce a much louder sound than if one says the stop [t]. Sonority hierarchies are especially important when analyzing syllable structure; rules about what segments may appear in onsets or codas together, such as SSP, are formulated in terms of the difference of their sonority values. Some languages also have assimilation rules based on sonority hierarchy, for example, the Finnish potential mood, in which a less sonorous segment changes to copy a more sonorous adjacent segment (e.g. -tne- → -nne-).

Sonority hierarchy

Sonority hierarchies vary somewhat in which sounds are grouped together. The one below is fairly typical:

vowels approximants
(glides and liquids)
nasals fricatives affricates stops
syllabic: + -
approximant: + -
sonorant: + -
continuant: + -
delayed release: + -

Sound types are the most sonorous on the left side of the scale, and become progressively less sonorous towards the right (e.g., fricatives are less sonorous than nasals).

The labels on the left refer to distinctive features, and categories of sounds can be grouped together according to whether they share a feature. For instance, as shown in the sonority hierarchy above, vowels are considered [+syllabic], whereas all consonants (including stops, affricates, fricatives, etc.) are considered [−syllabic]. All sound categories falling under [+sonorant] are sonorants, whereas those falling under [−sonorant] are obstruents. In this way, any contiguous set of sound types may be grouped together on the basis of no more than two features (for instance, glides, liquids, and nasals are [−syllabic, +sonorant]).

Sonority scale

Most sonorous (weakest consonantality) to

least sonorous (strongest consonantality)

English examples
low (open vowels) [a]
mid vowels [e o]
high vowels (close vowels) / glides (semivowels) [i u j w] (first two are close vowels, last two are semivowels)
flaps [ɾ]
laterals [l]
nasals [m n ŋ]
voiced fricatives [z v ð]
voiceless fricatives [f θ s]
voiced plosives [b d g]
voiceless plosives [p t k]
complex plosives

[1][2]

In English, the sonority scale, from highest to lowest, is the following:

[a] > [e o] > [i u j w] > [ɾ] > [l] > [m n ŋ] > [z v ð] > [f θ s] > [b d ɡ] > [p t k] [3][4][5][6]

In layman terms this scale, in which members of the same group hold the same sonority, represents from greatest to least the presence of vibrations in vocal cords. Vowels have the most amount of vibration, whereas consonants are in part due to the lack of vibration or a break in vibration. The top of the scale, open vowels, has the greatest amount of air being used for vibration where as the bottom of the scale has the least amount of air being used for vibration of the vocal cords. This can be demonstrated by putting a few fingers on one's throat and pronouncing an open vowel such as the vowel [a], and then pronouncing one of the plosives (also known as stop consonants) of the [p t k] class. In the vowel case, there is a consistent level pressure generated from the lungs and diaphragm, as well as the pressure difference in one's body and outside the mouth being minimal. In the plosive case, the pressure generated from the lungs and diaphragm changes significantly, as well as the pressure difference in one's body and outside the mouth being maximal before release (no air is flowing and vocal cords are not in resistance to the air flow).

More finely nuanced hierarchies often exist within classes whose members cannot be said to be distinguished by relative sonority. In North American English, for example, of the set /p t k/, /t/ is by far the most subject to weakening when before an unstressed vowel (v. the usual American pronunciation of /t/ as a flap in later, but normally no weakening of /p/ in caper or of /k/ in faker).

In Portuguese, intervocalic /n/ and /l/ are typically lost historically (e.g. Lat. LUNA > /lua/ 'moon', DONARE > /doar/ 'donate', COLORE > /kor/ 'color'), but /r/ remains (CERA > /sera/ 'wax'), whereas Romanian transformed the intervocalic non-geminate /l/ into /r/ (SOLEM > /so̯are/ 'sun') and reduced the geminate /ll/ to /l/ (OLLA > /o̯alə/ 'pot'), but kept unchanged /n/ (LUNA > /lunə/ 'moon') and /r/ (PIRA > /parə/ 'pear'). Similarly, Romance languages often show geminate /mm/ to be weaker than /nn/, and Romance geminate /rr/ is often stronger than other geminates, including /pp tt kk/. In such cases, many phonologists refer not to sonority, but to a more abstract notion of relative strength, which, while once posited as universal in its arrangement, is now known to be language-specific.

Sonority in phonotactics

Syllable structure tends to be highly influenced and motivated by the sonority scale, with the general rule that more sonorous elements are internal (i.e., close to the syllable nucleus) and less sonorant elements are external. For instance, the sequence /plant/ is permissible in many languages, while /lpatn/ is much less likely. (This is the sonority sequencing principle). This rule is applied with varying levels of strictness cross-linguistically, with many languages allowing exceptions: for example, in English, /s/ can be found external to stops even though it is more sonorous (e.g. "strong", "hats").

In many languages the presence of two non-adjacent highly-sonorous elements can be a reliable indication of how many syllables are in the word; /ata/ is most likely two syllables, and many languages would deal with the sequences like /mbe/ or /lpatn/ by pronouncing them as multiple syllables, with syllabic sonorants: [m̩.be] and [l̩.pat.n̩].

References

  1. ^ "What is the sonority scale?". www-01.sil.org. Retrieved 2016-11-21.
  2. ^ Burquest, Donald A., and David L. Payne. 1993. Phonological analysis: A functional approach. Dallas, TX: Summer Institute of Linguistics. pg 101
  3. ^ "What is the sonority scale?". www-01.sil.org. Retrieved 2016-11-21.
  4. ^ Selkirk E (1984). "On the major class features and syllable theory". In Aronoff & Oehrle.
  5. ^ O'Grady, W. D.; Archibald, J. (2012). Contemporary linguistic analysis: An introduction (7th ed.). Toronto: Pearson Longman. p. 70.
  6. ^ "Consonants: Fricatives". facweb.furman.edu. Retrieved 2016-11-28.