From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Scientific classification

Winogradsky 1888

Thiothrix is a genus of filamentous sulfur-oxidizing bacteria, related to the genera Beggiatoa and Thioploca. They are usually Gram-negative (but can be Gram-variable) and rod-shaped (0.7–1.5 µm in width by 1.2–2.5 µm in length). They form ensheathed multicellular filaments that are attached at the base, and form gonidia at their free end. The apical gonidia have gliding motility. Rosettes of the filaments are not always formed but are typical. Sulfur is deposited in invaginations within the cell membrane.[1][2]


  • Thiothrix nivea Rabenhorst 1865) Winogradsky 1888[2]
  • Thiothrix defluvii Howarth et al 1999[3]
  • Thiothrix eikelboomii Howarth et al 1999[3]
  • Thiothrix fructosivorans Howarth et al 1999[3]
  • Thiothrix unzii Howarth et al 1999[3]
  • Thiothrix disciformis Aruga et al 2002[4]
  • Thiothrix flexilis Aruga et al 2002[4]
  • Thiothrix caldifontis Chernousova 2009[5]
  • Thiothrix lacustris Chernousova 2009[5]


Thiothrix live primarily in flowing water containing a source of sulfide but are also present in activated-sludge waste water treatment systems.[2] They are aerobic or microaerophilic in their oxygen requirements. Thiothrix species can be facultative autotrophs,[3] chemoorganotrophs[3] and mixotrophs.[3][6] The temperature range for growth can vary from cold springs to hot vents while salinity can vary from fresh to ocean water.[7][8][9][10][11] Thiothrix can be found in symbiotic relationships with other organisms.[12][13][14]


  1. ^ Larkin, J M; Strohl, W R (1 October 1983). "Beggiatoa, Thiothrix, and Thioploca". Annual Review of Microbiology. 37 (1): 341–367. doi:10.1146/annurev.mi.37.100183.002013.
  2. ^ a b c ed.-in-chief, George M. Garrity, (2005). The Gammaproteobacteria (2. ed.). New York, NY: Springer. pp. 131–142. ISBN 0387241442.CS1 maint: Extra text: authors list (link)
  3. ^ a b c d e f g Howarth, R.; Unz, R. F.; Seviour, E. M.; Seviour, R. J.; Blackall, L. L.; Pickup, R. W.; Jones, J. G.; Yaguchi, J.; Head, I. M. (1 October 1999). "Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewatertreatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov". International Journal of Systematic Bacteriology. 49 (4): 1817–1827. doi:10.1099/00207713-49-4-1817. PMID 10555365.
  4. ^ a b Aruga, S. (2002). "Characterization of filamentous Eikelboom type 021N bacteria and description of Thiothrix disciformis sp. nov. and Thiothrix flexilis sp. nov". International Journal of Systematic and Evolutionary Microbiology. 52 (4): 1309–1316. doi:10.1099/ijs.0.02177-0.
  5. ^ a b Chernousova, E.; Gridneva, E.; Grabovich, M.; Dubinina, G.; Akimov, V.; Rossetti, S.; Kuever, J. (30 July 2009). "Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov., gammaproteobacteria isolated from sulfide springs". International Journal of Systematic and Evolutionary Microbiology. 59 (12): 3128–3135. doi:10.1099/ijs.0.009456-0. PMID 19643883.
  6. ^ Nielsen, Per Halkjaer; de Muro Marilena; Aquino Nielsen; Jeppe Lund (1 August 2000). "Studies on the in situ physiology of Thiothrix spp. present in activated sludge". Environmental Microbiology. 2 (4): 389–398. doi:10.1046/j.1462-2920.2000.00120.x.
  7. ^ Koch, Marcus; Rudolph, Christian; Moissl, Christine; Huber, Robert (1 July 2006). "A cold-loving crenarchaeon is a substantial part of a novel microbial community in cold sulphidic marsh water". FEMS Microbiology Ecology. 57 (1): 55–66. doi:10.1111/j.1574-6941.2006.00088.x.
  8. ^ Camacho, Antonio; Rochera Carlos; Silvestre Juan; José Vicente; Eduardo Hahn; Martin W. (13 October 2005). "Spatial Dominance and Inorganic Carbon Assimilation by Conspicuous Autotrophic Biofilms in a Physical and Chemical Gradient of a Cold Sulfurous Spring: The Role of Differential Ecological Strategies". Microbial Ecology. 50 (2): 172–184. doi:10.1007/s00248-004-0156-x.
  9. ^ Glud, R.N.; Rysgaard, S.; Fenchel, T.; Nielsen, P.H. "A conspicuous H2S-oxidizing microbial mat from a high-latitude Arctic fjord (Young Sound, NE Greenland)". Marine Biology. 145 (1). doi:10.1007/s00227-004-1296-8.
  10. ^ Rudolph, Christian; Moissl, Christine; Henneberger, Ruth; Huber, Robert (1 October 2004). "Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs". FEMS Microbiology Ecology. 50 (1): 1–11. doi:10.1016/j.femsec.2004.05.006.
  11. ^ Konkol, Nick R.; Bruckner, James C.; Aguilar, Carmen; Lovalvo, David; Maki, James S. "Dominance of Epiphytic Filamentous Thiothrix spp. on an Aquatic Macrophyte in a Hydrothermal Vent Flume in Sedge Bay, Yellowstone Lake, Wyoming". Microbial Ecology. 60 (3): 528–538. doi:10.1007/s00248-010-9656-z.
  12. ^ Gillan, D. C.; Dubilier, N. (7 June 2004). "Novel Epibiotic Thiothrix Bacterium on a Marine Amphipod". Applied and Environmental Microbiology. 70 (6): 3772–3775. doi:10.1128/AEM.70.6.3772-3775.2004. PMC 427760.
  13. ^ Dattagupta, Sharmishtha; Schaperdoth Irene; Montanari Alessandro; Mariani Sandro; Kita Noriko; Valley John W; Macalady Jennifer L (9 April 2009). "A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod". The ISME Journal. 3 (8): 935–943. doi:10.1038/ismej.2009.34. PMID 19360027.
  14. ^ Flot, Jean-François; Wörheide, Gert; Dattagupta, Sharmishtha (1 January 2010). "Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy". BMC Evolutionary Biology. 10 (1): 171. doi:10.1186/1471-2148-10-171. PMC 2896373. PMID 20534131.