Jump to content

User:Exhausted Lemon/Animatronics

From Wikipedia, the free encyclopedia

Article Draft

[edit]

Lead

[edit]

Animatronics refers to mechatronic puppets. They are a modern variant of the automaton and are often used for the portrayal of characters in films and in theme park attractions.

It is a multidisciplinary field integrating puppetry, anatomy and mechatronics. Animatronic figures can be implemented with both computer and human control, including teleoperation. Motion actuators are often used to imitate muscle movements and create realistic motions. Figures are usually encased in body shells and flexible skins made of hard and soft plastic materials and finished with colors, hair, feathers and other components to make them more lifelike. Animatronics stem from a long tradition of mechanical automata powered by hydraulics, pneumatics and clockwork. Greek mythology and ancient Chinese writings mention early examples of automata. The oldest extant automaton is dated to the 16th century.

Before the term "animatronics" became common, they were usually referred to as "robots". Since then, robots have become known as more practical programmable machines that do not necessarily resemble living creatures. Robots (or other artificial beings) designed to convincingly resemble humans are known as "androids". The term Animatronics is a portmanteau of animate and electronics. The term Audio-Animatronics was coined by Walt Disney in 1961 when he started developing animatronics for entertainment and film. Audio-Animatronics does not differentiate between animatronics and androids.

Autonomatronics was also defined by Disney Imagineers to describe more advanced Audio-Animatronic technology featuring cameras and complex sensors to process and respond to information in the character's environment.

Article body

[edit]

Structure

[edit]

An animatronics character is typically designed to be as realistic as possible and thus, is built similarly to how it would be in real life. The framework of the figure is like the "skeleton". Joints, motors, and actuators act as the "muscles". Connecting all the electrical components together are wires, such as the "nervous system" of a real animal or person. Steel, aluminum, plastic, and wood are all commonly used in building animatronics but each has its best purpose. The relative strength, as well as the weight of the material itself, should be considered when determining the most appropriate material to use. The cost of the material may also be a concern. Several materials are commonly used in the fabrication of an animatronics figure's exterior. Dependent on the particular circumstances, the best material will be used to produce the most lifelike form.

For example, "eyes" and "teeth" are commonly made completely out of acrylic.

Materials

[edit]
  • Latex: White latex is commonly used as a general material because it has a high level of elasticity. It is also pre-vulcanized, making it easy and fast to apply. Latex is produced in several grades. Grade 74 is a popular form of latex that dries rapidly and can be applied very thick, making it ideal for developing molds. Foam latex is a lightweight, soft form of latex which is used in masks and facial prosthetics to change a person's outward appearance, and in animatronics to create a realistic "skin". The Wizard of Oz was one of the first films to make extensive use of foam latex prosthetics in the 1930s.
  • Silicone: Disney has a research team devoted to improving and developing better methods of creating more lifelike animatronics exteriors with silicone. RTV silicone (room temperature vulcanization silicone) is used primarily as a molding material as it is very easy to use but is relatively expensive. Few other materials stick to it, making molds easy to separate. Bubbles are removed from silicone by pouring the liquid material in a thin stream or processing in a vacuum chamber prior to use. Fumed silica is used as a bulking agent for thicker coatings of the material.
  • Polyurethane: Polyurethane rubber is a more cost effective material to use in place of silicone. Polyurethane comes in various levels of hardness which are measured on the Shore scale. Rigid polyurethane foam is used in prototyping because it can be milled and shaped in high density. Flexible polyurethane foam is often used in the actual building of the final animatronic figure because it is flexible and bonds well with latex.
  • Plaster: As a commonplace construction and home decorating material, plaster is widely available. Its rigidity limits its use in moulds, and plaster moulds are unsuitable when undercuts are present. This may make plaster far more difficult to use than softer materials like latex or silicone.

Movement

[edit]

Pneumatic actuators can be used for small animatronics but are not powerful enough for large designs and must be supplemented with hydraulics. To create more realistic movement in large figures, an analog system is generally used to give the figures a full range of fluid motion rather than simple two position movements. Mimicking the often subtle displays of humans and other living creatures, and the associated movement is a challenging task when developing animatronics. One of the most common emotional models is the Facial Action Coding System (FACS) developed by Ekman and Friesen. FACS defines that through facial expression, humans can recognize 6 basic emotions: anger, disgust, fear, joy, sadness, and surprise. Another theory is that of Ortony, Clore, and Collins, or the OCC model which defines 22 different emotional categories.

In 2020 Disney revealed its new animatronics robot that can breathe, move its eyes very much like humans, and identify people around it in order to select "an appropriate" response, as opposed to previous Disney animatronics that were used in purely scripted, non-interactive situations, like theme park rides.

References

[edit]