Jump to content

User:Joflaher/sandbox

From Wikipedia, the free encyclopedia

Deoxyribonuclease gamma, more commonly termed DNASIL3, deoxyribonuclease 1 like 3, or deoxyribonuclease 1L3, is an enzyme that in humans is encoded by the DNASE1L3 gene (also termed the DNAS1L3, DHP2, LSD, or SLEB16 gene). This gene's chromosomal location is abbreviated as 3p14.3-p21.1, i.e., it is on chromosome 3's short, i.e., "p", arm between region 1, band 4, sub-band 3 and region 2, band 1, sub-band 1.[1][2]

The DNase1L3 protein is one of the deoxyribonucleases secreted by various cell types that degrades cell-free DNA and thereby plays a crucial role in efferocytosis. Efferocytosis is the process by which apoptotic, i.e., dead, cells are engulphed by phagocytes and thereby removed from tissues. Humans with inactivating mutations in both of their DNASELD genes consequently fail to remove the DNA released by these dead cells, develop cell-free accumulations of the antigenic DNA released by the dead cells, and mount autoimmune inflammation responses to the antigenic DNA that accumulate in multiple sites throughout their bodies.[3] The complete deficiency of the DNASE1L3 gene in humans thereby leads to the autoimmune inflammatory disorders of systemic lupus erythematosus (including its lupus nephritis form). In an extremely small percentages of individuals, it may also lead to hypocomplementemic urticarial vasculitis syndrome (also known as McDuffie syndrome), to rare cases of to alveolar hemorrhages (i.e., bleeding into the alveoli of their lungs) or to inflammatory bowel disease.[3][4][5]

EIE review.[6]

EIE review. Pediatric systemic lupus erythematosus.[7]

DNASE1L3 encodes a nuclease that cleaves double-stranded DNA during apoptosis20. The 3p14 DNASE1L3 locus confers rheumatoid arthritis susceptibility without evidence of a T1D effect (P > 0.02; Supplementary Fig. 11). The reported3 lead SNP rs35677470, encoding an p.Arg206Cys change in DNASE1L3, has a high posterior probability (P = 1.8 × 10−8; posterior probability = 0.82; Supplementary Table 13) and is in linkage disequilibrium with another reported8 lead variant, rs73081554 (R2 = 0.79). Conditioning on p.Arg206Cys obviates any evidence of independent risk variants (P > 5 × 10−4; Supplementary Table 16). p.Arg206Cys has been implicated in systemic sclerosis21; other loss-of-function DNASE1L3 mutation [8]

DNASE1L3/DNASE1L3 DNA-chromatin degradation in apoptotic bleb AR Early-onset SLE, antinuclear antibodies, anti-dsDNA, ANCA In humans, complement deficiencies and the DNASE1L3 deficiency define a subset of monogenic lupus due to efferocytosis defect and excess of apoptotic bodies.[9]

Rare familial cases of SLE segregate with autosomal recessive DNase1 (deoxyribonuclease 1) or DNASE1L3 (deoxyribonuclease 1 like 3, a homologue of DNAse1), extracellular accumulation of DNA, autoantibody production, complement consumption and early-onset SLE [5]

Pediatric systemic lupus erythematosus due to DNASE1L3 deficiency DNASE1L3 is an endonuclease that degrades extracellular DNA. DNASE1L3 deficiency decreases clearance of apoptotic cell [10]

Homozygous null mutations in DNASE1L3, preventing the expression of this protein which is closely related to DNase1, may also cause a fully-penetrant form of monogenic lupus[11]

Pediatric SLE due to DNASE1L3 deficiency DNASE1L3 AR Very early-onset SLE, reduced complement levels, autoantibodies (dsDNA, ANCA), lupus nephritis, hypocomplementemic urticarial vasculitis syndrome [12]

Homozygosity for a null allele results in systemic lupus erythematosus.[4] A loss of function allele in DNASE1L3 is associated with rheumatoid arthritis.[13]

Pediatric systemic lupus erythematous due to DNASE1L3 deficiency, OAS1 deficiency, LSM11 (AR LOF)∗, RNU7–1∗, CDC42∗, STAT2 (AR GOF) [6]

Table.[6]


References

[edit]
  1. ^ Rodriguez AM, Rodin D, Nomura H, Morton CC, Weremowicz S, Schneider MC (June 1997). "Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I". Genomics. 42 (3): 507–13. doi:10.1006/geno.1997.4748. PMID 9205125.
  2. ^ "Entrez Gene: DNASE1L3 deoxyribonuclease I-like 3".
  3. ^ a b Tusseau M, Khaldi-Plassart S, Cognard J, Viel S, Khoryati L, Benezech S, Mathieu AL, Rieux-Laucat F, Bader-Meunier B, Belot A (April 2024). "Mendelian Causes of Autoimmunity: the Lupus Phenotype". Journal of Clinical Immunology. 44 (4): 99. doi:10.1007/s10875-024-01696-8. PMID 38619739.
  4. ^ a b Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N, Al Sonbul A, Sewairi W, Qari A, Abdallah E, Al-Owain M, Al Motywee S, Al-Rayes H, Hashem M, Khalak H, Al-Jebali L, Alkuraya FS (October 2011). "Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus". Nature Genetics. 43 (12): 1186–8. doi:10.1038/ng.975. PMID 22019780.
  5. ^ a b Charras A, Smith E, Hedrich CM (February 2021). "Systemic Lupus Erythematosus in Children and Young People". Current Rheumatology Reports. 23 (3): 20. doi:10.1007/s11926-021-00985-0. PMC 7875946. PMID 33569643.
  6. ^ a b c Yu JE (February 2024). "New primary immunodeficiencies 2023 update". Current Opinion in Pediatrics. 36 (1): 112–123. doi:10.1097/MOP.0000000000001315. PMID 38001560.
  7. ^ Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, Rundles CC, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Puel A, Puck J, Seppänen MR, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I (October 2022). "The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity". Journal of Clinical Immunology. 42 (7): 1508–1520. doi:10.1007/s10875-022-01352-z. PMID 36198931.
  8. ^ Westra HJ, Martínez-Bonet M, Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, Worthington J, Martin J, Huizinga T, Klareskog L, Rantapaa-Dahlqvist S, Chen WM, Quinlan A, Todd JA, Eyre S, Nigrovic PA, Gregersen PK, Rich SS, Raychaudhuri S (October 2018). "Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes". Nature Genetics. 50 (10): 1366–1374. doi:10.1038/s41588-018-0216-7. PMC 6364548. PMID 30224649.
  9. ^ Omarjee O, Picard C, Frachette C, Moreews M, Rieux-Laucat F, Soulas-Sprauel P, Viel S, Lega JC, Bader-Meunier B, Walzer T, Mathieu AL, Cimaz R, Belot A (October 2019). "Monogenic lupus: Dissecting heterogeneity". Autoimmunity Reviews. 18 (10): 102361. doi:10.1016/j.autrev.2019.102361. PMID 31401343.
  10. ^ Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE (January 2020). "Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee". Journal of Clinical Immunology. 40 (1): 24–64. doi:10.1007/s10875-019-00737-x. PMC 7082301. PMID 31953710.
  11. ^ Tsilifis C, Slatter MA, Gennery AR (2023). "Too much of a good thing: a review of primary immune regulatory disorders". Frontiers in Immunology. 14: 1279201. doi:10.3389/fimmu.2023.1279201. PMC 10645063. PMID 38022498.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Gray PE, David C (June 2023). "Inborn Errors of Immunity and Autoimmune Disease". The Journal of Allergy and Clinical Immunology. in Practice. 11 (6): 1602–1622. doi:10.1016/j.jaip.2023.04.018. PMID 37119983.
  13. ^ Westra HJ, Martínez-Bonet M, Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, et al. (October 2018). "Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes". Nature Genetics. 50 (10): 1366–1374. doi:10.1038/s41588-018-0216-7. PMC 6364548. PMID 30224649.

Further reading

[edit]