User:Katiejill127/Chézy formula
This is the sandbox I plan to use to draft my contribution to the Chézy formula page.
As I'm contributing to an existing article, I wanted to briefly explain the gaps I plan to fill. The article has already been flagged with the following statement, "This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed". This article is a stub of medium-level importance for both the WikiProject Physics and WikiProject Civil engineering. It is also supported by Fluid Dynamics Taskforce.
I plan to both expand and improve the information and citations needed for the page, explaining the formula, how and why it was developed from a noticed proportional relationship, and how the method was further improved by physicists and engineers in following decades. I want to use good sources to support the Chézy formula and turn it from a stub to a well-explained article. As there are existing pages on the formula's founder, Antoine de Chézy, as well as existing pages on how the formula was expanded and modified by Irish Engineer Robert Manning as the Manning formula, my contributions may spill over these 4 pages, to prevent repeating redundant information. The gaps I wish to fill are not just citations but also the relationship Antoine de Chézy observed, what about this man caused him to observe this relationship, how the formula method was developed, how it evolved, how it was improved upon by other scientists, and possibly how it's best used today.
*Note 1* - I will need to learn how to make a redirect for "Chézy equation" to Chézy formula because one doesn't exist yet. I also will need to learn how to remove the flag.
*Note 2* - This article is flagged as "needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed". Once I am finished improving this article, I will need to learn how to remove this flag.
*Note 3* - Two of my cited sources are flagged as incomplete. I researched how to fix them but the fixes I made did not remain and the source changed back into present format. I may need help on the final draft to fix them.
This is the sandbox page where you will draft your initial Wikipedia contribution.
If you're starting a new article, you can develop it here until it's ready to go live. If you're working on improvements to an existing article, copy only one section at a time of the article to this sandbox to work on, and be sure to use an edit summary linking to the article you copied from. Do not copy over the entire article. You can find additional instructions here. Remember to save your work regularly using the "Publish page" button. (It just means 'save'; it will still be in the sandbox.) You can add bold formatting to your additions to differentiate them from existing content. |
Article Draft
[edit][Here is my draft to improve the article Chézy formula.]
Lead:
[edit]The Chézy formula is an semi-empirical resistance equation[1][2] which estimates mean flow velocity in open channel conduits[3]. The relationship was realized and developed in 1768 by French physicist and engineer Antoine de Chézy (1718-1798) while designing Paris's water canal system.[2][4] Chézy discovered a similarity parameter that could be used for estimating flow characteristics in one channel based on the measurements of another.[1] The Chézy formula relates the flow of water through an open channel with the channel's dimensions and slope. The Chézy equation is a pioneering formula in the field of Fluid Mechanics, and was expanded and modified by Irish Engineer Robert Manning in 1889.[5][6][7][1] Manning's modifications to the Chézy formula allowed the entire similarity parameter to be calculated by channel characteristics rather than by experimental measurements. Today, the Chézy and Manning equations continue to accurately estimate open channel fluid flow and are standard formulas in all fields that relate to fluid mechanics and hydraulics, including physics, mechanical engineering and civil engineering.
Article body:
[edit]The Chézy formula
[edit]The Chézy formula describes the mean flow velocity in turbulent open channel flow[3] and is used broadly in fields related to fluid mechanics and fluid dynamics. Open channels refer to any open conduit, such as rivers, ditches, canals, or partially-full pipes. The Chézy formula is defined for uniform equilibrium and non-uniform gradually varied flows.[2]
The formula is written as:
Where,
- is the mean velocity [length/time];
- is the hydraulic gradient, which is the slope of the channel bottom for uniform flow [unitless; length/length];
- is hydraulic radius [length], which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this is approximately equal to the water depth); and
- is Chézy's coefficient [length1/2/time]. The value of this coefficient must be determined by experiments. The Chézy coefficient ranges typically from 30 m1/2/s (small rough channel) up to 90 m1/2/s (large smooth channel).[2]
For many years, researchers assumed that was a constant that was independent of flow conditions, however additional research proved the coefficient's dependence upon the Reynolds number and channel roughness.[2] In this way, although the Chézy formula does not seem to directly incorporate these terms, the Chézy coefficient empirically represents them.
Hydraulic radius, Rh, is 1/4 the hydraulic diameter and is defined as the area of the flow section divided by the wetted perimeter, P. [1][8]
Exploring Chézy's similarity parameter
[edit]The relationship between linear momentum and deformable fluid bodies is well explored in Wikipedia, as are Navier-Stokes Equations for incompressible flow.
This is not a full derivation of the Chézy formula. To keep this article introductory, advanced derivation components are skipped. Please consult a Fluid Mechanics or Open-Channel Flow textbook for a derivation of the Chézy equation.
To understand the Chézy similarity parameter, we may consider a simple linear momentum equation[1][2] to summarize the conservation of momentum of a control volume uniformly flowing through an open channel:
+ [1]
Where the sum of forces on the contents of a control volume in the open channel are equal to the sum of the time rate of change of the linear momentum of the contents of the control volume, plus the net rate of flow of linear momentum through the control surface.[1] The momentum principle may always used for hydrodynamic force calculations.[2]
When we apply the linear momentum equation to a river channel flowing in one dimension, so long as we assume uniform flow, momentum remains conserved and forces are balanced in the direction of flow:
Where the hydrostatic pressure forces F1 and F2, the component (τwPl) representing the shear force of friction acting on the control volume, and the component (ωsinθ) representing the gravitational force of the fluid's weight acting on the sloped channel bottom are held in balance in the flow direction.[1] The below free-body diagram may help illustrate this equilibrium of forces in open channel flow with uniform flow conditions.
Most open-channel flows are turbulent and characterized with very large Reynolds numbers. Due to the large Reynolds numbers characteristic in open channel flow, the channel shear stress proves to be proportional to the density and velocity of the flow. This can be illustrated in a series of advanced formulas which identify a shear stress similarity parameter characteristic of all turbulent open channels. Combining this parameter with channel components and the conservation of momentum in an open channel flow, we result with the Chézy formula explaining this relationship.
Chézy's formula inspires the Manning formula
[edit]Once this relationship was established by Chézy, many engineers and physicists (see the below section Authors of flow formulas)[7][9] continued to search for ways to improve Chézy's equation. A slight oversight of Chézy's formula was determined by the research of these colleagues. They determined that the velocity's slope dependence in Chézy's formula (V : S0) was reasonable, but that the velocity's dependence on the hydraulic radius (V : Rh1/2) was not, and that the relationship was closer to (V : Rh2/3). Many compelling formulas based on Chézy's formula have been developed since its discovery by these contemporaries and others, where differing formulas are more suitable in differing conditions.[1][7][9]
Most notably, the Chézy formula provided a substantial foundation for a new flow formula proposed in 1889 by Irish engineer Robert Manning. Manning's formula is a modified Chézy formula that combined many of his aforementioned contemporaries' work.[7][6] Manning's modifications to the Chézy formula allowed the entire similarity parameter to be calculated by channel characteristics rather than by experimental measurements.[1] The Manning equation improved Chézy's equation by better representing the relationship between Rh and velocity, while also replacing the empirical Chézy coefficient () with the Manning resistance coefficient (), also referenced in places as the Manning roughness coefficient.[3] Unlike the Chézy coefficient () which could only be determined by field measurements, the Manning coefficient () was determined to remain constant based on the material of the wetted perimeter, allowing for a standardized table of values to be developed that could reasonably estimate flow velocity.[1][3] While field measurements remain the most precise way to obtain either Chézy or Manning coefficients, the standardized values that were developed with the use of the Manning formula provided a much-desired simplicity to open-channel flow estimates.
Chézy formula vs Manning formula
[edit]The Manning formula is described excellently elsewhere, but is included below for comparison purposes. Below, the minor modifications used by the Manning formula to improve upon the Chézy formula are clear.
Chézy formula Manning formula
Using Chézy formula with Manning coefficient
[edit]This similarity between the Chézy and Manning formulas shown above also means that the standardized Manning coefficients may be used to estimate open channel flow velocity with the Chézy formula, by using them to calculate the Chézy's coefficient as shown below. Manning derived[5] the following relationship between Manning coefficient () to Chézy coefficient () based upon experiments:
where
- is the Chézy coefficient [length1/2/time], a function of relative roughness and Reynolds number[2];
- is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this approximately equal to the water depth) [m];
- is Manning's coefficient [time/length1/3]; and
- is a constant; k = 1 when using SI units and k = 1.49 when using BG units.
Modern Usage of Chézy and Manning formulas
[edit]Both formulas are widely taught and used in modern times. As both equations reference a single control volume location along the channel, neither address friction factor or head loss[7] directly, but change in pressure head may be calculated by combining them with other formulas such as the Darcy-Weisbach equation.[2] The empirical aspect to the coefficient indirectly addresses friction factor and Reynold's number, and is the reason why the Chézy formula remains most accurate in certain conditions, such as river channels with non-uniform channel dimensions.[2] Additionally, both equations are explicitly used with uniform or "steady-state" flow where the hydraulic depth is constant, due to their derivation from the conservation of momentum.[2] In contrast, if the hydraulic conditions fluctuate in open channel flow, they are then described as gradually or rapidly varied flow,[7] and will require further analyses beyond these two formula methods.
As partially-full pipes are also open channels, so long as they aren't pressurized, the Manning and Chézy formulas are also used to calculate partially-full pipe flow,[2] but remember that these formulas are intended for uniform and turbulent flow. Many other formulas that have been developed since these two may produce more accurate pipe flow results, such as the Darcey-Weisbach equation or the Hazen-Williams equation, but lack the simplicity of the Manning or Chézy formulas.
Both formulas continue to be broadly taught and used as foundational to open channel and fluid dynamics research. Today, the Manning formula is likely the most globally used formula for open channel uniform flow analysis, due greatly to its simplicity, proven efficacy, and the fact that most open channel studies are concerned with turbulent flow.[10] However, the Chézy's formula is one of the oldest in the field of fluid mechanics,[1] it applies to a wider range of flows than the Manning equation,[11] and its influence continues to this day.
Authors of flow formulas
[edit]- Albert Brahms (1692 – 1758)
- Antoine de Chézy (1718 – 1798)
- Claude-Louis Navier (1785 – 1836)
- Adhémar Jean Claude Barré de Saint-Venant (1797 – 1886)
- Gotthilf Heinrich Ludwig Hagen (1797 – 1884)
- Jean Léonard Marie Poiseuille (1797 – 1869)
- Henri P. G. Darcy (1803 – 1858)
- Julius Ludwig Weisbach (1806 – 1871)
- Charles Storrow (1809 – 1904)
- Robert Manning (1816 – 1897)
- Wilhelm Rudolf Kutter (1818 – 1888)
- Emile Oscar Ganguillet (1818 – 1894)
- Sir George Stokes (1819 – 1903)
- Philippe Gaspard Gauckler (1826 – 1905)
- Henri-Émile Bazin (1829 – 1917)
- Alphonse Fteley (1837 – 1903)
- Frederic Stearns (1851 – 1919)
- Ludwig Prandtl (1875 – 1953)
- Paul Richard Heinrich Blasius (1883 – 1970)
- Albert Strickler (1887 – 1963)
- Cyril Frank Colebrook (1910 – 1997)
See also
[edit]- Manning formula
- Darcy–Weisbach equation
- Navier-Stokes Equations
- Hydrology
- Open Channel Flow
- Fluid Mechanics
- Fluid Dynamics
- Fluid Hydraulics
- Civil Engineering
- Mechanical Engineering
- Hydraulic Engineering
References
[edit]- ^ a b c d e f g h i j k l m n o p Munson, Bruce Roy (2016). Munson, Young, and Okiishi's Fundamentals of fluid mechanics. Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein, Donald F. Young, T. H. Okiishi (Eighth edition ed.). Hoboken, NJ. ISBN 1-119-08070-3. OCLC 916723577.
{{cite book}}
:|edition=
has extra text (help)CS1 maint: location missing publisher (link) - ^ a b c d e f g h i j k l Hubert., Chanson, (2004). Hydraulics of Open Channel Flow. Elsevier. ISBN 978-0-08-047297-3. OCLC 476042721.
{{cite book}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ a b c d "Chezys Conduit Flow Equation". www.engineeringtoolbox.com. Retrieved 2022-03-14.
- ^ "Chezys Formula | Encyclopedia.com". www.encyclopedia.com. Retrieved 2022-03-14.
- ^ a b Manning, R., "On the flow of Water in Open Channels and Pipes." Transactions Institute of Civil Engineers of Ireland, vol. 20, pp 161-209, Dublin, 1891, Supplement, vol 24, pp. 179-207, 1895
- ^ a b Hunter., Rouse, (1980). History of hydraulics. Iowa Institute of Hydraulic Research. OCLC 314087644.
{{cite book}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ a b c d e f g "Dimensionally Homogeneous Form of the Chezy and Manning Equations". Hydro Review. 2014-04-24. Retrieved 2022-03-14.
- ^ a b "USBR Water Measurement Manual - Chapter 2 - Basic Concepts Related to Flowing Water and Measurement, Section 11. Hydraulic Mean Depth and Hydraulic Radius". www.usbr.gov. Retrieved 2022-03-14.
- ^ a b "w james notable folks in water engineering". www.chiwater.com. Retrieved 2022-04-03.
- ^ "Why is Manning's formula more often used than Chezy formula in open channel flows?". Civil Engineering Portal - Biggest Civil Engineering Information Sharing Website. 2010-09-20. Retrieved 2022-04-03.
- ^ Cornell University Hydrology Bee 473 (Fall 2004). "Watershed Engineering: Open Channels" (PDF). Cornell University Ecohydrology Group. Retrieved 04/02/2022.
{{cite web}}
: Check date values in:|access-date=
(help)CS1 maint: numeric names: authors list (link)
[ALSO, Here is the article Antoine de Chézy, I essentially rewrote this article for our assignment last week, "Exercise: Add to an article", as it was greatly in need of help. Since the article already exists, providing biographical information for the founder of the formula I will be working on, I chose to not draft a biographical section the the Chézy formula article but to instead continue to improve this article too.]
Antoine de Chézy (September 1, 1718 – October 5, 1798), also called Antoine Chézy, was a French physicist and hydraulics engineer who contributed greatly to the study of Fluid Mechanics and designed a canal for the Paris water supply.[1][2] He is known for developing a similarity parameter for predicting the flow characteristics of one channel based on the measurements of another, known today as the Chézy Formula or the Chézy Equation.[1] The Chézy Equation is a pioneering formula in the field of Fluid Mechanics, and was expanded and modified by Irish Engineer Robert Manning in 1889[1] as the Manning Formula. The Chézy Formula concerns the velocity of water flowing through conduits, which can be applied to pipe flow,[3] but is widely celebrated for its use in open channel flow calculations.[4]
Chézy was born September 1, 1718 in Châlons-en-Champagne, France. Chézy graduated with honors from the Ecole des Ponts et Chaussées and worked closely with Jean-Rodolphe Perronet, the first director of the school.[5] He contributed to a wide range of projects that we would describe today as civil engineering, including the construction of bridges, canals, and streets in Paris.[1][5] Chézy and Perronet were tasked to determine how much flow could be diverted from the Yvette River to improve the Paris water supply.[5] They sought to predict the flow of water in open channels based on analytical methods rather than full-scale field experiment tests.[5] Chézy built model channels on which he ran tests to determine the factors that influence flow in an open channel[5], and the famed Chézy formula continues to be used in open channel analyses today. In 1798, he became Director of the Ecole Nationale Supérieure des Ponts-et-Chaussées after teaching there for many years.[2] Antoine de Chézy died October 5, 1798 in Paris after serving as director of the École Nationale des Ponts et Chaussées for less than one year.[6] His son was orientalist Antoine-Léonard de Chézy (1773–1832).
References
[edit]- ^ a b c d Cite error: The named reference
:02
was invoked but never defined (see the help page). - ^ a b Cite error: The named reference
:6
was invoked but never defined (see the help page). - ^ The Study of Landforms, Page 88
- ^ Martin & McCutcheon, 1999, Hydrodynamics and Transport, Lewis
- ^ a b c d e Cite error: The named reference
:5
was invoked but never defined (see the help page). - ^ 115 experiments on the carrying capacity of large, riveted, metal conduits ... By Clemens Herschel. pg 118