Jump to content

User:Marksbeans/sandbox

From Wikipedia, the free encyclopedia

Sex-specific effects of temperature on reproductive behaviors and fitness in Drosophila melanogaster[edit]

5.1 Developmental Plasticity

As in most insects[1], environmental factors such as temperature can influence development in Drosophila melanogaster[2] [3]. For example, temperature can lead to phenotypic variation, such as larger or smaller body sizes via developmental plasticity [4]. Temperature-induced developmental plasticity can be beneficial and/or detrimental [5][6]. Most often lower developmental temperatures reduce growth rates which influence many other physiological factors.[7] For example, development at 25 ° C increases walking speed, thermal performance breadth, and territorial success, while development at 18 ° C increases body mass, wing size, and egg size.[3][5]. Moreover, developing at certain low temperatures produces large wings which improve flight performance at similarly low temperatures.[8]

While certain effects of developmental temperature, like body size, are irreversible in ectotherms, others can be reversible [1][9]. When Drosophila melanogaster develop at cold temperatures they will have greater cold tolerance, but if cold-reared flies are maintained at warmer temperatures their cold tolerance decreases and heat tolerance increases over time [9][10].

Developmental temperature can produce sex-specific effects in D. melanogaster adults.

  • Females- Ovariole number is significantly affected by developmental temperature in D. melanogaster. [11] Egg size is also affected by developmental temperature, and exacerbated when both parents develop at warm temperatures (Maternal effect). [5] Early fecundity (total eggs laid in first 10 days post-eclosion) is maximized when reared at 25 ° C (versus 17 ° C and 29 ° C) regardless of adult temperature.[12] Across a wide range of developmental temperatures, females tend to have greater heat tolerance than males. [13]
  • Males- Stressful developmental temperatures will cause sterility in D. melanogaster males; although the upper temperature limit can be increased by maintaining strains at high temperatures.[6] Male sterility can also be reversible if adults are returned to an optimal temperature after developing at stressful temperatures [14]. Male flies are smaller and more successful at defending food/oviposition sites when reared at 25 ° C versus 18 ° C [3].





  1. ^ a b Abram, Paul K.; Boivin, Guy; Moiroux, Joffrey; Brodeur, Jacques (2017). "Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity". Biological Reviews of the Cambridge Philosophical Society. 92 (4): 1859–1876. doi:10.1111/brv.12312. ISSN 1469-185X. PMID 28980433.
  2. ^ Gibert, Patricia; Huey, Raymond B.; Gilchrist, George W. (2001). "Locomotor Performance of Drosophila Melanogaster: Interactions Among Developmental and Adult Temperatures, Age, and Geography". Evolution. 55 (1): 205–209. doi:10.1111/j.0014-3820.2001.tb01286.x. ISSN 1558-5646.
  3. ^ a b c Zamudio, Kelly R.; Huey, Raymond B.; Crill, Wayne D. (1995). "Bigger isn't always better: body size, developmental and parental temperature and male territorial success in Drosophila melanogaster". Animal Behaviour. 49 (3): 671–677. doi:10.1016/0003-3472(95)80200-2. ISSN 0003-3472.
  4. ^ West-Eberhard, Mary Jane (2005). "Developmental plasticity and the origin of species differences". Proceedings of the National Academy of Sciences. 102 (suppl 1): 6543–6549. doi:10.1073/pnas.0501844102. ISSN 0027-8424. PMID 15851679.
  5. ^ a b c Crill, Wayne D.; Huey, Raymond B.; Gilchrist, George W. (1996). "Within- and Between-Generation Effects of Temperature on the Morphology and Physiology of Drosophila melanogaster". Evolution. 50 (3): 1205–1218. doi:10.2307/2410661. ISSN 0014-3820.
  6. ^ a b David, J. R.; Araripe, L. O.; Chakir, M.; Legout, H.; Lemos, B.; Pétavy, G.; Rohmer, C.; Joly, D.; Moreteau, B. (2005). "Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations". Journal of Evolutionary Biology. 18 (4): 838–846. doi:10.1111/j.1420-9101.2005.00914.x. ISSN 1420-9101.
  7. ^ French, Vernon; Feast, Marieke; Partridge, Linda (1998-11-01). "Body size and cell size in Drosophila: the developmental response to temperature". Journal of Insect Physiology. 44 (11): 1081–1089. doi:10.1016/S0022-1910(98)00061-4. ISSN 0022-1910.
  8. ^ Frazier, Melanie R.; Harrison, Jon F.; Kirkton, Scott D.; Roberts, Stephen P. (2008-07-01). "Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology". Journal of Experimental Biology. 211 (13): 2116–2122. doi:10.1242/jeb.019422. ISSN 0022-0949. PMID 18552301.
  9. ^ a b Slotsbo, Stine; Schou, Mads F.; Kristensen, Torsten N.; Loeschcke, Volker; Sørensen, Jesper G. (2016-09-01). "Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance". Journal of Experimental Biology. 219 (17): 2726–2732. doi:10.1242/jeb.143750. ISSN 0022-0949. PMID 27353229.
  10. ^ Gilchrist, George W.; Huey, Raymond B. (2001). "Parental and Developmental Temperature Effects on the Thermal Dependence of Fitness in Drosophila Melanogaster". Evolution. 55 (1): 209–214. doi:10.1111/j.0014-3820.2001.tb01287.x. ISSN 1558-5646.
  11. ^ Hodin, Jason; Riddiford, Lynn M. (2000). "Different Mechanisms Underlie Phenotypic Plasticity and Interspecific Variation for a Reproductive Character in Drosophilids (insecta: Diptera)". Evolution. 54 (5): 1638–1653. doi:10.1111/j.0014-3820.2000.tb00708.x. ISSN 1558-5646.
  12. ^ Klepsatel, Peter; Girish, Thirnahalli Nagaraj; Dircksen, Heinrich; Gáliková, Martina (2019-05-15). "Reproductive fitness of Drosophila is maximised by optimal developmental temperature". Journal of Experimental Biology. 222 (10). doi:10.1242/jeb.202184. ISSN 0022-0949. PMID 31064855.
  13. ^ Schou, Mads F.; Kristensen, Torsten N.; Pedersen, Anders; Karlsson, B. Göran; Loeschcke, Volker; Malmendal, Anders (2016-12-07). "Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 312 (2): R211–R222. doi:10.1152/ajpregu.00268.2016. ISSN 0363-6119. PMC 5336569. PMID 27927623.{{cite journal}}: CS1 maint: PMC format (link)
  14. ^ Cohet, Y.; David, J. (1978-01-01). "Control of the adult reproductive potential by preimaginal thermal conditions". Oecologia. 36 (3): 295–306. doi:10.1007/BF00348055. ISSN 1432-1939.