Jump to content

User:Paczki sa nalepsze z dzemem/sandbox

From Wikipedia, the free encyclopedia

Definition

[edit]

Consider a holomorphic complex function germ

and denote by the ring of all function germs . Every level of a function is a complex hypersurface in , therefore we will call a hypersurface singularity.

Assume it is an isolated singularity: in case of holomorphic mappings we say that a hypersurface singularity is singular at if its gradient is zero at and that a singular point is isolated if it is the only singular point in a sufficiently small neighbourhood. In particular, the multiplicity of the gradient

is finite. This number is the Milnor number of singularity at .

Geometric interpretation

[edit]

Milnor originally[1] introduced in geometric terms in the following way. All fibers for values close to are nonsingular manifolds of real dimension . Their intersection with a small open disc centered at is a smooth manifold called the Milnor fiber. Up to diffeomorphism does not depend on or if they are small enough. It is also diffeomorphic to the fiber of the Milnor fibration map.

The Milnor fiber is a smooth manifold of dimension and has the same homotopy type as a bouquet of spheres . This is to say that its middle Betti number is equal to the Milnor number and it has homology of a point in dimension less than . For example, a complex plane curve near every singular point has its Milnor fiber homotopic to a wedge of circles (Milnor number is a local property, so it can have different values at different singular points).

Thus we have equalities

Milnor number = number of spheres in the wedge = middle Betti number of = degree of the map on = multiplicity of the gradient

Another way of looking at Milnor number is by perturbation. We say that a point is a degenerate singular point, or that f has a degenerate singularity, at if is a singular point and the Hessian matrix of all second order partial derivatives has zero determinant at :

We assume that f has a degenerate singularity at 0. We can speak about the multiplicity of this degenerate singularity by thinking about how many points are infinitesimally glued. If we now perturb the image of f in a certain stable way the isolated degenerate singularity at 0 will split up into other isolated singularities which are non-degenerate! The number of such isolated non-degenerate singularities will be the number of points that have been infinitesimally glued.

Precisely, we take another function germ g which is non-singular at the origin and consider the new function germ h := f + εg where ε is very small. When ε = 0 then h = f. The function h is called the morsification of f. It is very difficult to compute the singularities of h, and indeed it may be computationally impossible. This number of points that have been infinitesimally glued, this local multiplicity of f, is exactly the Milnor number of f.

Further contributions[2] give meaning to Milnor number in terms of dimension of the space of versal deformations, i.e. the Milnor number is the minimal dimension of parameter space of deformations that carry all information about initial singularity.

  1. ^ Milnor, John (1969). Singular points of Complex Hypersurfaces. Annals of Mathematics Studies. Princeton University Press.
  2. ^ Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N. (1988). Singularities of differentiable maps. Vol. Volume 2. Birkhäuser. {{cite book}}: |volume= has extra text (help)