Tetrahedral symmetry [ edit ]
reflection lines for [3,3] =
The simplest irreducible 3-dimensional finite reflective group is tetrahedral symmetry , [3,3], order 24, . The reflection generators, from a D3 =A3 construction, are matrices R0 , R1 , R2 . R0 2 =R1 2 =R2 2 =(R0 ×R1 )3 =(R1 ×R2 )3 =(R0 ×R2 )2 =Identity. [3,3]+ ( ) is generated by 2 of 3 rotations: S0,1 , S1,2 , and S0,2 . A trionic subgroup , isomorphic to [2+ ,4], is generated by S0,2 and R1 . A 4-fold rotoreflection is generated by V0,1,2 .
[3,3],
Reflections
Rotations
Rotoreflection
Name
R0 = [ ]
R1 = [ ]
R2 = [ ]
S0,1 =R0 ×R1 [3]+
S1,2 =R1 ×R2 [3]+
S0,2 =R0 ×R2 [2]+
V0,1,2 =R0 ×R1 ×R2 [4+ ,2+ ]
Order
2
2
2
3
3
2
4
Matrix
[
1
0
0
0
0
1
0
1
0
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&0&1\\0&1&0\\\end{smallmatrix}}\right]}
[
0
1
0
1
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}0&1&0\\1&0&0\\0&0&1\\\end{smallmatrix}}\right]}
[
1
0
0
0
0
−
1
0
−
1
0
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&0&-1\\0&-1&0\\\end{smallmatrix}}\right]}
[
0
1
0
0
0
1
1
0
0
]
{\displaystyle \left[{\begin{smallmatrix}0&1&0\\0&0&1\\1&0&0\\\end{smallmatrix}}\right]}
[
0
0
−
1
1
0
0
0
−
1
0
]
{\displaystyle \left[{\begin{smallmatrix}0&0&-1\\1&0&0\\0&-1&0\\\end{smallmatrix}}\right]}
[
1
0
0
0
−
1
0
0
0
−
1
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0\\0&-1&0\\0&0&-1\\\end{smallmatrix}}\right]}
[
0
0
−
1
0
−
1
0
1
0
0
]
{\displaystyle \left[{\begin{smallmatrix}0&0&-1\\0&-1&0\\1&0&0\\\end{smallmatrix}}\right]}
(0,1,-1)n
(1,-1,0)n
(0,1,1)n
(1,1,1)axis
(1,1,-1)axis
(1,0,0)axis
Hypertetrahedral symmetry [ edit ]
The simplest irreducible 4-dimensional finite reflective group is hypertetrahedral or pentachoric symmetry , [3,3,3], order 120, . The reflection generators, defined by extending D3 , are matrices R0 , R1 , R2 , R3 . R0 2 =R1 2 =R2 2 =R3 2 =(R0 ×R1 )3 =(R1 ×R2 )3 =(R2 ×R3 )3 =(R0 ×R2 )2 =(R1 ×R3 )2 =(R0 ×R3 )2 =Identity. [3,3,3]+ ( ) is generated by 3 of 6 rotations: S0,1 , S1,2 , S2,3 , S0,2 , S1,3 , and S0,3 . There are 4 rotoreflections generated by a product of 3 reflections: S0,1,2 , S0,1,3 , S0,2,3 and S1,2,3 . A 5-fold double rotation is generated by V0,1,2,3 =R0 ×R1 ×R2 ×R3 .
[3,3,3],
Reflections
Name
R0 = = [ ]
R1 = = [ ]
R2 = = [ ]
R3 = = [ ]
Order
2
2
2
2
Matrix
[
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}0&1&0&0\\1&0&0&0\\0&0&1&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
1
0
0
0
0
0
−
1
0
0
−
1
0
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0&0\\0&0&-1&0\\0&-1&0&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
3
4
−
1
4
−
1
4
−
5
4
−
1
4
3
4
−
1
4
−
5
4
−
1
4
−
1
4
3
4
−
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
(0,1,-1,0)n
(1,-1,0,0)n
(0,1,1,0)n
(-1,-1,-1,√5 )n
Rotations
Name
S0,1 = R0 ×R1 [3]+
S1,2 = R1 ×R2 [3]+
S2,3 = R2 ×R3 [3]+
S0,2 = R0 ×R2 [2]+
S1,3 = R1 ×R3 [2]+
S0,3 = R0 ×R3 [2]+
Order
3
3
3
2
2
2
Matrix
[
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}0&1&0&0\\0&0&1&0\\1&0&0&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
0
0
−
1
0
1
0
0
0
0
−
1
0
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}0&0&-1&0\\1&0&0&0\\0&-1&0&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
3
4
−
1
4
−
1
4
−
5
4
1
4
1
4
−
3
4
5
4
1
4
−
3
4
1
4
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {1}{4}}&{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {1}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
[
1
0
0
0
0
−
1
0
0
0
0
−
1
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
−
1
4
3
4
−
1
4
−
5
4
3
4
−
1
4
−
1
4
−
5
4
−
1
4
−
1
4
3
4
−
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
[
3
4
−
1
4
−
1
4
−
5
4
−
1
4
−
1
4
3
4
−
5
4
−
1
4
3
4
−
1
4
−
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
Rotoreflections
Double rotation
Name
T0,1,2 = R0 ×R1 ×R2 [4+ ,2+ ]
T0,1,3 = R0 ×R1 ×R3 [6+ ,2+ ]
T0,2,3 = R0 ×R2 ×R3 [6+ ,2+ ]
T1,2,3 = R1 ×R2 ×R3 [4+ ,2+ ]
V0,1,2,3 = R0 ×R1 ×R2 ×R3
Order
4
6
6
4
5
Matrix
[
0
0
−
1
0
0
−
1
0
0
1
0
0
0
0
0
0
1
]
{\displaystyle \left[{\begin{smallmatrix}0&0&-1&0\\0&-1&0&0\\1&0&0&0\\0&0&0&1\\\end{smallmatrix}}\right]}
[
−
1
4
3
4
−
1
4
−
5
4
−
1
4
−
1
4
3
4
−
5
4
3
4
−
1
4
−
1
4
−
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {3}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
[
3
4
−
1
4
−
1
4
5
4
1
4
−
3
4
1
4
−
5
4
1
4
1
4
−
3
4
−
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {1}{4}}&{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
[
1
4
1
4
−
3
4
5
4
3
4
−
1
4
−
1
4
−
5
4
1
4
−
3
4
1
4
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {1}{4}}&{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {1}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}
[
1
4
1
4
−
3
4
5
4
1
4
−
3
4
1
4
5
4
3
4
−
1
4
−
1
4
−
5
4
−
5
4
−
5
4
−
5
4
−
1
4
]
{\displaystyle \left[{\begin{smallmatrix}{\frac {1}{4}}&{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {1}{4}}&{\frac {-3}{4}}&{\frac {1}{4}}&{\frac {\sqrt {5}}{4}}\\{\frac {3}{4}}&{\frac {-1}{4}}&{\frac {-1}{4}}&{\frac {-{\sqrt {5}}}{4}}\\{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-{\sqrt {5}}}{4}}&{\frac {-1}{4}}\\\end{smallmatrix}}\right]}