Jump to content

Short-beaked echidna: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
YellowMonkey (talk | contribs)
(33 intermediate revisions by 2 users not shown)
Line 4: Line 4:
| status_system = iucn3.1
| status_system = iucn3.1
| trend = unknown
| trend = unknown
| status_ref = <ref>{{IUCN2008|assessors=Aplin, K., Dickman, C., Salas, L. & Helgen, K.|year=2008|id=41312|title=Tachyglossus aculeatus|downloaded=10 October 2008}} Database entry includes justification for why this species is of least concern </ref>
| status_ref = <ref>{{IUCN2008|assessors=Aplin, K., Dickman, C., Salas, L. & Helgen, K.|year=2008|id=41312|title=Tachyglossus aculeatus|downloaded=10 October 2008}} Database entry includes justification for why this species is of least concern</ref>
| image = Wild shortbeak echidna.jpg
| image = Wild shortbeak echidna.jpg
| regnum = [[Animal]]ia
| regnum = [[Animal]]ia
Line 18: Line 18:
| binomial_authority = ([[George Shaw|Shaw]], 1792)
| binomial_authority = ([[George Shaw|Shaw]], 1792)
| subdivision_ranks = [[Subspecies]]
| subdivision_ranks = [[Subspecies]]
| subdivision =
| subdivision =
* ''[[Tachyglossus aculeatus acanthion|T. a. acanthion]]''
* ''[[Tachyglossus aculeatus acanthion|T. a. acanthion]]''
* ''[[Tachyglossus aculeatus aculeatus|T. a. aculeatus]]''
* ''[[Tachyglossus aculeatus aculeatus|T. a. aculeatus]]''
Line 28: Line 28:
| range_map_caption = Range of Short-beaked Echidna
| range_map_caption = Range of Short-beaked Echidna
}}
}}
The '''Short-beaked Echidna''' ('''''Tachyglossus aculeatus'''''), also known as the '''Spiny Anteater''' because of its diet of [[ant]]s and [[termites]], is one of four living species of [[echidna]] and the only member of the genus '''''Tachyglossus'''''. The Short-beaked Echidna is covered in fur and spines and has a distinctive snout and a specialized tongue, which it uses to catch its prey at a great speed. Like the other extant [[monotreme]]s, the Short-beaked Echidna lays [[egg (biology)|eggs]]; the [[monotremes]] are the only group of [[mammal]]s to do so.
The '''Short-beaked Echidna''' ('''''Tachyglossus aculeatus'''''), also known as the '''Spiny Anteater''' because of its diet of [[ant]]s and [[termites]], is one of four living species of [[echidna]] and the only member of the genus '''''Tachyglossus'''''. The Short-beaked Echidna is covered in fur and spines and has a distinctive snout and a specialised tongue, which it uses to catch its prey at a great speed. Like the other extant [[monotreme]]s, the Short-beaked Echidna lays [[egg (biology)|eggs]]; the [[monotremes]] are the only group of [[mammal]]s to do so.

The Echidna has extremely strong front limbs and claws due to its [[mechanical advantage]]. This allows it to burrow quickly with great power. As it needs to be able to survive underground, it has a great tolerance to high levels of carbon dioxide and a lack of oxygen. It has no weapons or fighting ability and repels predators by curling into a spherical ball and deterring opponent with its spines. The Echidna lacks the ability to sweat and cannot deal with heat well, so it tends to avoid daytime activity in hot weather and can swim if needed. The Echidna's snout has mechanical and electroreceptors that help it to detect what is around it, and it also has the ability to reason.

During the winter, it goes into deep torpor and hibernation to save energy and reduce metabolism, before emerging as the temperature increases to breed. Female Echidnas only lay one egg a year, and the mating period is the only time that the otherwise solitary animals meet one another; the father has no further contact with the mother after mating. After the young is born, it is only the size of a grape, but grows rapidly on the mother's milk, which is very rich in nutrients. After a period they are too large and spiky to stay in the pouch, and after around six months they leave the burrow and have no more contact with their mother.

The species is found throughout [[Australia]], where it is the most widespread native mammal, and in coastal and highland regions of southwestern [[New Guinea]], where it is known as the ''Mungwe'' in the [[Dadibi language|Daribi]] and [[Kuman language (New Guinea)|Chimbu]] languages.<ref name = "Flannery">Flannery, T. 1990. ''Mammals of New Guinea'' Robert Brown & Associates ISBN 1-86273-029-6</ref> It is not threatened with extinction, but human activities, such as hunting, habitat destruction, and the [[Invasive species in Australia|introduction]] of foreign predatory species and parasites, have reduced the distribution of the Short-beaked Echidna in Australia. Attempts to breed the Echidna in captivity have not been succesful to date, with none reaching maturity. However, as the Echidna can survive merely by foraging dead logs for ants and termites, it can survive in environments with restricted resources.


The species is found throughout [[Australia]], where it is the most widespread native mammal, and in coastal and highland regions of southwestern [[New Guinea]], where it is known as the ''Mungwe'' in the [[Dadibi language|Daribi]] and [[Kuman language (New Guinea)|Chimbu]] languages.<ref name = "Flannery">Flannery, T. 1990. ''Mammals of New Guinea'' Robert Brown & Associates ISBN 1-86273-029-6</ref> It is not threatened with extinction, but human activities, such as hunting, habitat destruction, and the [[Invasive species in Australia|introduction]] of foreign predatory species and parasites, have reduced the distribution of the Short-beaked Echidna in Australia.


==Taxonomy and naming==
==Taxonomy and naming==
The Short-beaked Echidna was first described by [[George Shaw]] in 1792. He named the [[species]] ''Myrmecophaga aculeata'', thinking it might be related to the South American [[anteater]]. Since Shaw first described the species, its name has undergone four revisions: from ''M. aculeata'' to ''Ornithorhynchus hystrix'', ''Echidna hystrix'', ''Echidna aculeata'' and, finally, ''Tachyglossus aculeatus''.<ref>Iredale, T. and Troughton, E. 1934. A checklist of mammals recorded from Australia. ''Memoirs of the Australian Museum'' 6: i–xii, 1–122</ref> The name ''Tachyglossus'' means "quick tongue", in reference to the speed with which the Echidna uses its tongue to catch ants and termites, and ''aculeatus'' means "spiny" or "equipped with spines".
The Short-beaked Echidna was first described by [[George Shaw]] in 1792. He named the [[species]] ''Myrmecophaga aculeata'', thinking it might be related to the South American [[anteater]]. Since Shaw first described the species, its name has undergone four revisions: from ''M. aculeata'' to ''Ornithorhynchus hystrix'', ''Echidna hystrix'', ''Echidna aculeata'' and, finally, ''Tachyglossus aculeatus''.<Ref name=a5/><ref>Iredale, T. and Troughton, E. 1934. A checklist of mammals recorded from Australia. ''Memoirs of the Australian Museum'' 6: i–xii, 1–122</ref> The name ''Tachyglossus'' means "quick tongue",<ref name=a5/> in reference to the speed with which the Echidna uses its tongue to catch ants and termites,<Ref name=a5/> and ''aculeatus'' means "spiny" or "equipped with spines".<Ref name=a5>Augee, Gooden and Musser, p. 5.</ref>


The Short-beaked Echidna is the only member of its [[genus]], sharing the family [[Echidna|Tachyglossidae]] with the extant species of the genus ''[[Zaglossus]]'' that occur in New Guinea. ''Zaglossus'' species, which include the [[Western Long-beaked Echidna|Western Long-beaked]], [[Sir David's Long-beaked Echidna|Sir David's Long-beaked]] and [[Eastern Long-beaked Echidna]], are all significantly larger than ''T. aculeatus'', and their diet consists mostly of worms and grubs rather than ants and termites. Species of the Tachyglossidae are egg-laying mammals; together with the related family [[Platypus|Ornithorhynchidae]], they are the only extant [[monotreme]]s in the world.
The Short-beaked Echidna is the only member of its [[genus]],<ref>http://animaldiversity.ummz.umich.edu/site/accounts/classification/Tachyglossus.html</ref> sharing the family [[Echidna|Tachyglossidae]] with the extant species of the genus ''[[Zaglossus]]'' that occur in New Guinea.<Ref>Augee, Gooden and Musser, pp. 5&ndash;9.</ref> ''Zaglossus'' species, which include the [[Western Long-beaked Echidna|Western Long-beaked]], [[Sir David's Long-beaked Echidna|Sir David's Long-beaked]] and [[Eastern Long-beaked Echidna]],<ref>http://animaldiversity.ummz.umich.edu/site/accounts/classification/Zaglossus.html</ref> are all significantly larger than ''T. aculeatus'', and their diet consists mostly of worms and grubs rather than ants and termites.<Ref>Augee, Gooden and Musser, pp. 7&ndash;10.</ref> Species of the Tachyglossidae are egg-laying mammals; together with the related family [[Platypus|Ornithorhynchidae]], they are the only extant [[monotreme]]s in the world.<ref name=a10>Augee, Gooden and Musser, p. 10.</ref>


There are five subspecies of the Short-beaked Echidna, each found in a different geographical location. The subspecies also differ from one another in their hairiness, spine length and width, and the size of the grooming claws on their hind feet.
There are five subspecies of the Short-beaked Echidna, each found in a different geographical location. The subspecies also differ from one another in their hairiness, spine length and width, and the size of the grooming claws on their hind feet.<Ref name=a6_7>Augee, Gooden and Musser, pp. 6&ndash;7.</ref>


*'''''T. a. acanthion''''' is found in [[Northern Territory]] and [[Western Australia]];
*'''''T. a. acanthion''''' is found in [[Northern Territory]] and [[Western Australia]];
*'''''T. a. aculeatus''''' is found in [[Queensland]], [[New South Wales]], [[South Australia]] and [[Victoria (Australia)|Victoria]];
*'''''T. a. aculeatus''''' is found in [[Queensland]], [[New South Wales]], [[South Australia]] and [[Victoria (Australia)|Victoria]];<ref name=a6_7/>
*'''''T. a. lawesii''''' is found in coastal regions and the highlands of New Guinea, and possibly in the rainforests of Northeast Queensland;<ref>Griffiths, M.E. 1978. ''The Biology of Monotremes''. Academic Press : New York ISBN 0-12-303850-2</ref>
*'''''T. a. lawesii''''' is found in coastal regions and the highlands of New Guinea, and possibly in the rainforests of Northeast Queensland;<ref>Griffiths, M.E. 1978. ''The Biology of Monotremes''. Academic Press : New York ISBN 0-12-303850-2</ref>
*'''''T. a. multiaculeatus''''' is found on [[Kangaroo Island]];
*'''''T. a. multiaculeatus''''' is found on [[Kangaroo Island]];
*'''''T. a. setosus''''' is found on [[Tasmania]] and some islands in [[Bass Strait]].
*'''''T. a. setosus''''' is found on [[Tasmania]] and some islands in [[Bass Strait]].<ref name=a6_7/>

The earliest fossils of the Short-beaked Echidna date back around 15 million years ago to the [[Pleistocene]] era, and the oldest specimens were found in caves in [[South Australia]], often together with fossils of the Long-beaked Echidna from the same period. The ancient Short-beaked Echidnas are considered to be identical to their contemporary descendants apart from the fact that the ancestors are around 10%.<Ref name=a16>Augee, Gooden and Musser, p. 16.</ref><ref name=a10>Augee, Gooden and Musser, p. 10.</ref> This "post-Pleistocene dwarfing" affects many Australian mammals.<Ref name=a10/> Part of the last radiation of monotreme mammals, Echidnas are believed to have evolutionally diverged from the platypus around 65 million years ago, between the Cretacious and Tertiary periods.<Ref name=a10/> However, the Echidna's pre-Pleistocene heritage has not been traced yet and the lack of teeth on the fossils found thus far have made it impossible to use dental evidence.<ref>Augee, Gooden and Musser, pp. 16&ndash;17.</ref>


[[Image:Short-beaked_Echidna,_Barrington.jpg|thumb|left|''T. a. setosus'', Barrington, [[Tasmania]]]]
[[Image:Short-beaked_Echidna,_Barrington.jpg|thumb|left|''T. a. setosus'', Barrington, [[Tasmania]]]]
Line 51: Line 58:
==Description==
==Description==
[[File:Onkapringa River NP echidna spines P1000601.jpg|thumb|Spines and fur of an echidna]]
[[File:Onkapringa River NP echidna spines P1000601.jpg|thumb|Spines and fur of an echidna]]
Short-beaked Echidnas are typically {{convert|30|to|45|cm|in}} in length, have a {{convert|75|mm|in|0|adj=on}} snout, and weigh between {{convert|2|and|5|kg|lb}}.<ref name=e38>Egerton, p. 38.</ref> However, the Tasmanian subspecies, ''T. a. setosus'', is larger than its Australian mainland counterparts. Because the neck is not externally visible, the head and body appear to merge together. The earholes are on either side of the head, with no external [[pinna (anatomy)|pinnae]]. The eyes are small and at the base of the wedge-shaped snout. The nostrils and the mouth are at the distal end of the snout; the mouth of the Short-beaked Echidna cannot open wider than {{convert|5|mm|in|1|abbr=on}}.<ref name = "Murray">Murray, P.F. 1981. A unique jaw mechanism in the echidna, ''Tachglossus aculeatus'' (Monotremata). ''Australian Journal of Zoology'' 29: 1–5</ref> The body of the Short-beaked Echidna is, with the exception of the underside, face and legs, covered with cream-coloured spines. The spines, which may be up to {{convert|50|mm|in|0|abbr=on}} long, are modified hairs,<ref name=dpiw/> mostly made of [[keratin]].{{Citation needed|date=April 2010}} Insulation is provided by [[fur]] between the spines, which ranges in colour from honey to a dark reddish-brown and even black; the underside and short tail are also covered in fur.<ref name=dpiw/> Colouration of the fur and spines varies with geographic location. The Echidna's fur may be infested with what is said to be the world's largest [[flea]], ''[[Echidna flea|Bradiopsylla echidnae]]'', which is about {{convert|4|mm|in|abbr=on}} long.<ref name=dpiw/>
Short-beaked Echidnas are typically {{convert|30|to|45|cm|in}} in length, have a {{convert|75|mm|in|0|adj=on}} snout, and weigh between {{convert|2|and|5|kg|lb}}.<ref name=e38>Egerton, p. 38.</ref> However, the Tasmanian subspecies, ''T. a. setosus'', is smaller than its Australian mainland counterparts.<Ref name=a6>Augee, Gooden and Musser, p. 6.</ref> Because the neck is not externally visible, the head and body appear to merge together.<ref name=a2/> The earholes are on either side of the head,<ref name=a2/> with no external [[pinna (anatomy)|pinnae]].<ref name=a2/> The eyes are small, approximately a {{convert|9|mm|in|0|abbr=on}} diameter sphere and at the base of the wedge-shaped snout.<ref name=a55>Augee, Gooden and Musser, p. 55.</ref> The nostrils and the mouth are at the distal end of the snout;<ref name=a2>Augee, Gooden and Musser, p. 2.</ref> the mouth of the Short-beaked Echidna cannot open wider than {{convert|5|mm|in|1|abbr=on}}.<ref name = "Murray">Murray, P.F. 1981. A unique jaw mechanism in the echidna, ''Tachglossus aculeatus'' (Monotremata). ''Australian Journal of Zoology'' 29: 1–5</ref> The body of the Short-beaked Echidna is, with the exception of the underside, face and legs, covered with cream-coloured spines. The spines, which may be up to {{convert|50|mm|in|0|abbr=on}} long, are modified hairs,<ref name=dpiw/> mostly made of [[keratin]].<ref name=a35>Augee, Gooden and Musser, p. 35.</ref> Insulation is provided by [[fur]] between the spines, which ranges in colour from honey to a dark reddish-brown and even black; the underside and short tail are also covered in fur.<ref name=dpiw/> Colouration of the fur and spines varies with geographic location. The Echidna's fur may be infested with what is said to be the world's largest [[flea]], ''[[Echidna flea|Bradiopsylla echidnae]]'', which is about {{convert|4|mm|in|abbr=on}} long.<ref name=dpiw/>


The limbs of the Short-beaked Echidna are adapted for rapid digging: they are short and have strong [[claw]]s.<ref name=dpiw/> These strong and stout limbs allow the Echidna to tear apart large logs and move paving stones, and one has been recorded moving a {{convert|13.5|kg|lb}} stone; there has also been a report of a captive Echidna moving a refrigerator in the home of a scientist around the room.<Ref name=a100>Augee, Gooden and Musser, p. 100.</ref> The power of the limbs are based on strong musculature, particularly around the shoulder and torso area.<ref>Augee, Gooden and Musser, pp. 100&ndash;101.</ref> The [[mechanical advantage]] of its arm is greater than that of humans as its biceps connect the shoulder to forearm at a point further down than for humans,<ref>Augee, Gooden and Musser, pp. 101&ndash;102.</ref> and the chunky [[humerus]] allows for larger areas for more muscle to form.<ref name=a102>Augee, Gooden and Musser, p. 102.</ref>
The limbs of the Short-beaked Echidna are adapted for rapid digging: they are short and have strong [[claw]]s.<ref name=dpiw/> The claws on the hind feet are elongated and curve backwards to enable cleaning and grooming between the spines. Like the Platypus, the Echidna has a low [[body temperature]] – between {{convert|30|and|32|°C|°F}} – but, unlike the Platypus, which shows no evidence of [[torpor]] or hibernation, the body temperature of the Echidna may fall as low as {{convert|5|°C|°F}}.<ref>Dawson, T.J., Grant, T.R. and Fanning, D. 1979. Standard metabolism of monotremes and the evolution of homeothermy. ''Australian Journal of Zoology'' 27:511–515</ref> The Echidna does not pant or sweat{{Citation needed|date=April 2010}} and normally seeks shelter in hot conditions. In autumn and winter the Echidna shows periods of torpor or deep [[hibernation]].<ref name=bbc>{{cite web|url=http://www.bbc.co.uk/nature/wildfacts/factfiles/680.shtml |title=Science & Nature - Wildfacts - Short-beaked echidna, common echidna, spiny anteater |publisher=BBC |date=2008-07-25 |accessdate=2010-05-29}}</ref> Because of the low body temperature of the Short-beaked Echidna, it becomes sluggish in very hot and very cold weather.{{Citation needed|date=April 2010}} Like all monotremes, it has one [[body orifice|orifice]],{{Citation needed|date=April 2010}} known as the [[cloaca]], for the passage of [[feces|faeces]], [[urine]] and reproductive products.<ref name=bbc/> The male has internal [[testes]], no external [[scrotum]] and a highly unusual penis with four knobs on the tip. The [[gestation|gestating]] female develops a pouch on its underside, where it raises its young.

The claws on the hind feet are elongated and curve backwards to enable cleaning and grooming between the spines. Like the Platypus, the Echidna has a low [[body temperature]]&mdash;between {{convert|30|and|32|°C|°F}}&mdash;but, unlike the Platypus, which shows no evidence of [[torpor]] or hibernation, the body temperature of the Echidna may fall as low as {{convert|5|°C|°F}}.<ref>Dawson, T.J., Grant, T.R. and Fanning, D. 1979. Standard metabolism of monotremes and the evolution of homeothermy. ''Australian Journal of Zoology'' 27:511–515</ref> The Echidna does not pant or sweat<ref>Augee, Gooden and Musser, pp. 90&ndash;91.</ref> and normally seeks shelter in hot conditions.<ref name=a91>Augee, Gooden and Musser, p. 91.</ref> Despite the inability to sweat, the Echidna still lose water as they exhale. The snout is believed to be crucial in restricting this loss to sustainable levels, through a bony labyrinth that has a [[thermodynamic cycle|refrigerator effect]] and helps to condense water vapour in the breath.<ref>Augee, Gooden and Musser, pp. 114&ndash;115.</ref> The Echidna does not have highly concentrated urine, and around half of the estimated daily water loss of {{convert|120|g|oz}} occurs in this manner, while most of the rest is through the skin and respiratory system.<ref name=a115>Augee, Gooden and Musser, pp. 115.</ref> Most of this is replenished by the Echidna's substantial eating of termites&mdash;one laboratory study reported that it would ingest around {{convert|147|g|oz}} a day, most of which was water.<Ref name=a115/> This can be supplemented by drinking water if available, or licking morning dew from flora.<Ref name=a116>Augee, Gooden and Musser, p. 116.</ref>

In autumn and winter the Echidna shows periods of torpor or deep [[hibernation]].<ref name=bbc>{{cite web|url=http://www.bbc.co.uk/nature/wildfacts/factfiles/680.shtml |title=Science & Nature - Wildfacts - Short-beaked echidna, common echidna, spiny anteater |publisher=BBC |date=2008-07-25 |accessdate=2010-05-29}}</ref> Because of the low body temperature of the Short-beaked Echidna, it becomes sluggish in very hot and very cold weather.<ref>Augee, Gooden and Musser, pp. 114&ndash;115.</ref>

Like all monotremes, it has one [[body orifice|orifice]],<ref name=a3>Augee, Gooden and Musser, p. 3.</ref> known as the [[cloaca]], for the passage of [[feces|faeces]], [[urine]] and reproductive products.<ref name=bbc/> The male has internal [[testes]], no external [[scrotum]] and a highly unusual penis with four knobs on the tip.<Ref name=a79>Augee, Gooden and Musser, p. 79.</ref> The [[gestation|gestating]] female develops a pouch on its underside, where it raises its young.<ref name=a4>Augee, Gooden and Musser, p. 4.</ref>


[[Image:Echidna, Exmouth.jpg|left|thumb|A Short-beaked Echidna curled into a ball; the snout is visible on the right.]]
[[Image:Echidna, Exmouth.jpg|left|thumb|A Short-beaked Echidna curled into a ball; the snout is visible on the right.]]
The [[muscle|musculature]] of the Short-beaked Echidna has a number of unusual aspects. The [[panniculus carnosus]] is an enormous muscle that is just beneath the skin and covers the entire body. By contraction of various parts of the panniculus carnosus, the Short-beaked Echidna can change shape, the most characteristic shape change being achieved by rolling itself into a ball when threatened, so protecting its belly and presenting a defensive array of sharp spines. It has one of the shortest [[spinal cord]]s of any mammal, extending only as far as the [[thorax]].<ref>Hassiotis, M., Paxinos, G., and Ashwell, K.W.S. 2004. Anatomy of the central nervous system of the Australian echidna. ''Proceedings of the Linnean Society of New South Wales'' 125:287–300</ref>
The [[muscle|musculature]] of the Short-beaked Echidna has a number of unusual aspects. The [[panniculus carnosus]] is an enormous muscle that is just beneath the skin and covers the entire body. By contraction of various parts of the panniculus carnosus, the Short-beaked Echidna can change shape, the most characteristic shape change being achieved by rolling itself into a ball when threatened, so protecting its belly and presenting a defensive array of sharp spines. It has one of the shortest [[spinal cord]]s of any mammal, extending only as far as the [[thorax]].<ref>Hassiotis, M., Paxinos, G., and Ashwell, K.W.S. 2004. Anatomy of the central nervous system of the Australian echidna. ''Proceedings of the Linnean Society of New South Wales'' 125:287–300</ref> Whereas the human spinal cord ends at the first or second lumar vertebrae, for the Echidna it occurs at the seventh thoracic vertebra.<Ref name=a53>Augee, Gooden and Musser, p. 53.</ref> It has been conjectured that the shorter spinal cord allows the Echidna the flexibility to wrap into a ball.<ref name=a53/>

The musculature of the face, jaw and tongue is specialised to allow the Echidna to feed. The tongue of the Short-beaked Echidna is the animal's sole means of catching [[prey]], and can protrude up to {{convert|180|mm|in|0|abbr=on}}) outside the snout.<ref name=e38/> The snout's shape, resembling a double wedge, gives it a significant [[mechanical advantage]] in generating a large moment and therefore makes it efficient for digging to reach prey or to build a shelter.<ref>Augee, Gooden and Musser, pp. 103&ndash;104.</ref>The tongue is sticky because of the presence of [[glycoprotein]]-rich mucous, which both lubricates movement in and out of the snout and helps to catch ants and termites, which adhere to it. Protrusion of the tongue is achieved by contracting circular muscles that change the shape of the tongue and force it forwards and contracting two genioglossal muscles attached to the caudal end of the tongue and to the [[mandible]]. The protruded tongue is stiffened by the rapid flow of blood, allowing it to penetrate wood and soil. Retraction requires the contraction of two internal longitudinal muscles, known as the sternoglossi. When the tongue is retracted, the prey is caught on backward-facing [[keratin]]ous "teeth", located along the roof of the buccal cavity, allowing the animal both to capture and grind food.<ref name = "Murray"/><Ref name=a105/> The tongue moves with great speed, and has been measured to move in and out of the snout 100 times a minute.<ref name=e38/><ref>Doran, G.A. and Baggett, H. 1970. The vascular stiffening mechanism in the tongue of the echidna (''Tachyglossus aculeatus''). ''Anatomical Record'' 167: 197–204</ref> This is partly achieved through the elasticity of the tongue and the conversion of [[elastic potential energy]] into [[kinetic energy]].<ref name=a105/> The tongue is very flexible, particularly at the end, allowing it to bend in U-turns and catch insects attempting to flee in their twisty nests or mounds.<ref name=a104>Augee, Gooden and Musser, p. 104.</ref> The tongue also has an ability to avoid picking up splinters while foraging in logs; the reason for this is unknown.<Ref name=a105>Augee, Gooden and Musser, p. 105.</ref> It can eat quickly; a specimen of around {{convert|3|kg|lb}} can ingest {{convert|200|g|oz}} of termites in ten minutes.<ref name=a106/>

The Echidna has a stomach that is quite apart from other mammals. It is devoid of secretory glands and has coenfied stratified epithelium, which resembles horny skin.<ref name=a106>Augee, Gooden and Musser, p. 106.</ref> Unlike other mammals, which typically have highly acidic stomachs, the Echidna has low levels of acidity, almost neutral with [[pH]] in the 6.2&ndash;7.4 range.<Ref name=a106/> The stomach is elastic and the gastric peristalsis grinds dirt particulates and shredded insects together. The digestion occurs in the small intestine, which is around {{convert|3.4|m|ft}} in length. The insect exoskeletons and dirt are not digested and ejected in the waste.<Ref name=a106/>

Numerous [[physiological adaptations]] aid the lifestyle of the Short-beaked Echidna. Because the animal burrows, it can tolerate very high levels of [[carbon dioxide]] in inspired air, and will voluntarily remain in situations where carbon dioxide concentrations are high. It can dig up to a metre into the ground to retrieve ants or evade predators, and can survive with low oxygen when the area is engulfed by bushfires. The Echidna can also dive underwater, an ability that can help it to survive sudden floods.<Ref name=a116/> During these situations the heart rate drops to around 12&nbsp;beats per minute, around one fifth of the rate at rest. This process is believed to save oxygen for the heart and brain, which are the most sensitive to such a shortage, and laboratory testing has revealed that the Echidna's cardiovascular system is similar to that of the seal.<ref name=a116/>

The Echidna's optical system is an uncommon hybrid of both mammalian and reptilian characteristics. The cartilaginous layer beneath the scleral layer of the eyeball is similar to that of reptiles and avians.<Ref name=a55/> The small [[cornea]]'s surface is keratinised and hardened, possibly an evolution to protect the Echidna from chemicals secreted by preyed insects or self-impalement when it rolls itself up, something that has been observed.<Ref name=a56>Augee, Gooden and Musser, p. 56.</ref> The Echidna has the flattest lens of any animal, giving it the longest [[focal length]]. This similarity to primates and humans allow it to see distant objects clearly.<Ref name=a57>Augee, Gooden and Musser, p. 57.</ref> Unlike placental mammals&mdash;including humans&mdash;the Echidna does not have a ciliary muscle to distort the geometry of the lens and thereby change the focal length and allow objects at different distances to be viewed clearly, and it believed that the whole eye distorts so that the distance between the lens and screen instead changes to allow focusing.<Ref name=a57/> The visual ability of an Echidna is not great and it it not known whether it can perceive colour; however, it can distinguish between black and white, and horizontal and vertical stripes. Eyesight is not a crucial factor in the animal's ability to survive as blind Echidnas are able to live healthily.<ref>Augee, Gooden and Musser, pp. 58&ndash;59.</ref>

Its ear is sensitive to low-[[frequency]] sound, which may be ideal for detecting sounds emitted by termites and ants underground.<ref name=iggo/> The pinnae are obscured and covered by hair, mean that opponents can not grabb them in an attack, and that prey or foreign material cannot enter, although [[tick]]s are known to reside there.<ref name=a58>Augee, Gooden and Musser, p. 58.</ref> The ear has a [[macula]] which is very large compared to other animals. It is used as a gravity sensor to orient the Echidna. The large size is speculated to be due to importance of burrowing downwards for an Echidna.<Ref name=a65>Augee, Gooden and Musser, p. 65.</ref>

The leathery snout is keratinised and covered in mechano- and thermoreceptors, which provide information about the surrounding environment.<ref name=a66>Augee, Gooden and Musser, p. 66.</ref><ref name=iggo>Iggo, A., McIntyre, A.K. & Proske, U. (1985). Responses of mechanoreceptors and thermoreceptors in skin of the snout of the echidna ''Tachyglossus aculeatus''. ''Proceedings of the Royal Society of London B'' 223: 261–277</ref> These nerves protrude through microscopic holes at the end of the snout.<Ref name=a68>Augee, Gooden and Musser, p. 68.</ref> It also has mucous glands on the end of the snout that act as electroreceptors. It can detect [[electric field]]s of 1.8&nbsp;mV/cm&mdash;1,000 times more sensitive than humans&mdash;and dig up buried batteries.<Ref>Augee, Gooden and Musser, pp. 69&ndash;70.</ref> The Echidna has a series of push rods protruding from their snout. These are columns of flattened, spinous cells, with roughly an average diameter of 50&nbsp;micrometres and a length of 300&nbsp;micrometres. The number of push rods per square millimetre of skin is estimated to be 30&ndash;40.<ref>Augee, Gooden and Musser, pp. 70&ndash;71.</ref> It is believed that [[longitudinal waves]] can be picked up and transmitted through the rods and are mechanical sensors for the Echidna. It is thought that prey can be detected by these rods.<ref>Augee, Gooden and Musser, pp. 72&ndash;75.</ref>

The Short-beaked Echidna has a well-developed [[olfactory system]], which may be used to detect mates and prey. It has a highly sensitive [[optic nerve]], and has been shown to have visual discrimination and [[spatial memory]] comparable to those of a [[rat]].<ref>Burke, D. 2002. Win-shift and win-stay learning in the short-beaked echidna (''Tachyglossus aculeatus''). ''Animal Cognition'' 5:79–84 </ref> The [[brain]] and [[central nervous system]] of the Short-beaked Echidna have been extensively studied for evolutionary comparison with [[Placentalia|placental mammals]], particularly with its fellow monotreme, the Platypus.<Ref name=ns/><ref>Augee, Gooden and Musser, pp. 44&ndash;48.</ref> The average brain volume is 25&nbsp;mL, similar to a cat of approximately the same size,<Ref name=a45>Augee, Gooden and Musser, p. 45.</ref> but while the Platypus has a largely [[lissencephalic]] and smooth brain, the Echidna has a heavily folded and fissured gyrencephalic brain similar to humans, which is seen as a sign of a highly neurologically advanced animal.<Ref name=a47>Augee, Gooden and Musser, p. 47.</ref> The cerebral cortex is thinner, the brain cells larger and more densely packed and organised in the Echidna than the Platypus, suggesting that evolutionary divergence must have occurred long ago.<Ref name=a47/> Almost half of the sensory area in the brain is devoted to the snout and tongue, and the part devoted to smell is relatively high compared to other animals.<ref name=a47/>


The Short-beaked Echidna has the largest [[prefrontal cortex]] relative to body size of any mammal,<ref name=ns/> taking up 50% of the cerebral cortex in comparison to 29% for humans.<ref name=a48>Augee, Gooden and Musser, p. 48.</ref> This part of the brain in humans is though to be used for planning and analytical behaviour, leading to debate as to whether the Echidna has reasoning and strategising ability.<ref name=a48/><ref>Augee, Gooden and Musser, pp. 48&ndash;50.</ref> Experiments in a simple maze and with a test on whether the animal can open a trapdoor to access food, and the Echidna's ability to remember what it has learnt about the task for over a month has led scientists to conclude that its learning ability is similar to that of a cat or a rat.<Ref>Augee, Gooden and Musser, pp. 50&ndash;51.</ref>
The musculature of the face, jaw and tongue is specialised to allow the Echidna to feed. The tongue of the Short-beaked Echidna is the animal's sole means of catching [[prey]], and can protrude up to {{convert|180|mm|in|0|abbr=on}}) outside the snout.<ref name=e38/> The tongue is sticky because of the presence of [[glycoprotein]]-rich mucous, which both lubricates movement in and out of the snout and helps to catch ants and termites, which adhere to it. Protrusion of the tongue is achieved by contracting circular muscles that change the shape of the tongue and force it forwards and contracting two genioglossal muscles attached to the caudal end of the tongue and to the [[mandible]]. The protruded tongue is stiffened by the rapid flow of blood, allowing it to penetrate wood and soil. Retraction requires the contraction of two internal longitudinal muscles, known as the sternoglossi. When the tongue is retracted, the prey is caught on backward-facing [[keratin]]ous "teeth", located along the roof of the buccal cavity, allowing the animal both to capture and grind food.<ref name = "Murray"/> The tongue moves with great speed, and has been measured to move in and out of the snout 100 times a minute.<ref name=e38/><ref>Doran, G.A. and Baggett, H. 1970. The vascular stiffening mechanism in the tongue of the echidna (''Tachyglossus aculeatus''). ''Anatomical Record'' 167: 197–204</ref>


The Echidna shows [[rapid eye movement during sleep]], usually around its thermoneutral temperature of 25, and this effect is suppressed at othe temperatures.<Ref name=a53/> Its brain has been shown to contain a [[claustrum]] similar to that of placental mammals, so linking this structure to their [[Common descent|common ancestor]].<ref name=ns>Nicol, S.C., et al. 2000. The echidna manifests typical characteristics of rapid eye movement sleep. ''Neuroscience Letters'' 283:49–52</ref><ref>Ashwell, K.W.S., Hardman, C.D., and Paxinos, G. 2004. The claustrum is not missing from all monotreme brains. ''Brain Behaviour and Evolution'' 64:223–241 PMID 15319553</ref>
Numerous [[physiological adaptations]] aid the lifestyle of the Short-beaked Echidna. Because the animal burrows, it can tolerate very high levels of [[carbon dioxide]] in inspired air, and will voluntarily remain in situations where carbon dioxide concentrations are high. Its ear is sensitive to low-[[frequency]] sound, which may be ideal for detecting sounds emitted by termites and ants underground. The leathery snout is covered in mechano- and thermoreceptors, which provide information about the surrounding environment.<ref>Iggo, A., McIntyre, A.K. & Proske, U. (1985). Responses of mechanoreceptors and thermoreceptors in skin of the snout of the echidna ''Tachyglossus aculeatus''. ''Proceedings of the Royal Society of London B'' 223: 261–277</ref> The Short-beaked Echidna has a well-developed [[olfactory system]], which may be used to detect mates and prey. It has a highly sensitive [[optic nerve]], and has been shown to have visual discrimination and [[spatial memory]] comparable to those of a [[rat]].<ref>Burke, D. 2002. Win-shift and win-stay learning in the short-beaked echidna (''Tachyglossus aculeatus''). ''Animal Cognition'' 5:79–84 </ref> The [[brain]] and [[central nervous system]] of the Short-beaked Echidna have been extensively studied for evolutionary comparison with [[Placentalia|placental mammals]]. The Short-beaked Echidna has the largest [[prefrontal cortex]] relative to body size of any mammal, it shows [[rapid eye movement during sleep]], and its brain has been shown to contain a [[claustrum]] similar to that of placental mammals, so linking this structure to their [[Common descent|common ancestor]].<ref>Nicol, S.C., et al. 2000. The echidna manifests typical characteristics of rapid eye movement sleep. ''Neuroscience Letters'' 283:49–52</ref><ref>
Ashwell, K.W.S., Hardman, C.D., and Paxinos, G. 2004. The claustrum is not missing from all monotreme brains. ''Brain Behaviour and Evolution'' 64:223–241 PMID 15319553</ref>


==Ecology and behaviour==
==Ecology and behaviour==
[[File:French Island Echidna.ogg|thumb|left|A Short-beaked Echidna in [[French Island National Park]] building a defensive burrow (video 0:43s)]]
[[File:French Island Echidna.ogg|thumb|left|A Short-beaked Echidna in [[French Island National Park]] building a defensive burrow (video 0:43s)]]


No systematic study of the ecology of the Short-beaked Echidna has been published; however, there have been studies of several aspects of their ecological behaviour. Short-beaked Echidnas live alone and, apart from the burrow created for rearing young, they have no fixed shelter or nest site. They do not have a home territory, but range over a wide area. Short-beaked Echidnas are typically active in the daytime; however, they are ill-equipped to deal with heat, because they have no [[sweat gland]]s and do not pant. Therefore, in warm weather they change their pattern of activity, becoming [[crepuscular]] or [[nocturnal]]. They can tolerate cold temperatures, and hibernate during the winter in very cold regions.<ref>Grigg, G.C., Beard, L.A., and Augee, M.L. 1989. Hibernation in a monotreme, the echidna (''Tachyglossus aculeatus''). ''Comparative Biochemistry and Physiology. A, Comparative Physiology'' 92:609–612 PMID 2566425</ref>
No systematic study of the ecology of the Short-beaked Echidna has been published; however, there have been studies of several aspects of their ecological behaviour. Short-beaked Echidnas live alone and, apart from the burrow created for rearing young, they have no fixed shelter or nest site. They do not have a home territory that they defend against other Echidnas, but range over a wide area.<ref name=a91>Augee, Gooden and Musser, p. 91.</ref> The area that they move about in has been observed to be between 21 and 93&nbsp;ha, although one study in Kangaroo island found that the animals there covered an area between 9 and 192&nbsp;ha.<Ref name=a91/> Overall, the mean range area across the various regions of Australia were 40&ndash;60&nbsp;ha. There were no correlations between gender and range area, but a weak one with size.<Ref name=a91/> Echidnas can share home ranges without incident, and sometimes share shelter sites if there are not enough for or each animal to have one individually.<Ref>Augee, Gooden and Musser, pp. 91&ndash;92.</ref>


Short-beaked Echidnas are typically active in the daytime; however, they are ill-equipped to deal with heat, because they have no [[sweat gland]]s and do not pant. Therefore, in warm weather they change their pattern of activity, becoming [[crepuscular]] or [[nocturnal]].<Ref name=a114/> Body temperatures above {{convert|34|°C|°F}} are believed to be fatal, and in addition to avoiding the heat, the animal adjusts its circulation to maintain a sustainable temperature by moving blood to and from the skin to increase or lower heat loss.<ref name=a114/> In areas where water is present they can also swim to keep their body temperatures low.<Ref name=a114/> The "thermoneutral zone" for the environment is around {{convert|25|°C|°F}} at which point metabolism needed to maintain body temperature is minimised.<Ref name=a114/> They can tolerate cold temperatures, and hibernate during the winter in very cold regions, but also in more temperate climate.<ref>Grigg, G.C., Beard, L.A., and Augee, M.L. 1989. Hibernation in a monotreme, the echidna (''Tachyglossus aculeatus''). ''Comparative Biochemistry and Physiology. A, Comparative Physiology'' 92:609–612 PMID 2566425</ref> While the Echidna is an endothermic animal that can maintain body temperatures of around 32<Ref name=a108/>&mdash;although they have a range of about {{convert|6|°C|°F}} during the active season<Ref name=a112>Augee, Gooden and Musser, p. 112.</ref>&mdash;above that of the environment, they can reduce their metabolism and heart rate and their body temperature.<Ref name=a107>Augee, Gooden and Musser, p. 107.</ref> In addition to brief and light bouts of torpor throughout the year, the Echidna enters deeper periods during winter and hibernates.<Ref name=a108>Augee, Gooden and Musser, p. 108.</ref> During periods of hibernation, the body temperature drops to {{convert|10|°C|°F}} or lower, down to even {{convert|4|°C|°F}}. The heart rate falls to 4&ndash;7 beats per minute&mdash;down from 50&ndash;68 at rest<Ref name=a116>Augee, Gooden and Musser, p. 116.</ref>&mdash;and the Echidna can breathe as infrequently as once every three minutes,<Ref name=a108/> 15&ndash;18 times lower than when it is active.<Ref name=a116/> Metabolism can drop to one eighth of the normal rate.<Ref name=a109>Augee, Gooden and Musser, p. 109.</ref> Echidnas begin to prepare for the hibernation phase of the year between Frebruary and April, when they reduce their consumption and make brief torpors. Males begin hibernating first while females that have reproduced start later.<Ref name=a109>Augee, Gooden and Musser, p. 109.</ref> During the period of hibernation, the animals average 13 separate bouts of torpor, which are broken up by arousals lasting 1.2 days on average. These interruptions to the hibernation tend to coincide with warmer periods.<Ref name=a109/> Males begin to end the hibernation period in mid June, while reproductive females return to full activity in July and August, while non-reporductive females and immature Echidnas may not leave hibernation until two months later.<Ref name=a109/> During [[euthermia]], the body temperature can vary by {{convert|4|°C|°F}} per day.<Ref name=a109/> The metabolism rate of the Echidna is around 30% of that of placental mammals, making it the lowest energy consuming mammal. This figure is similar to that of animals that eat ants and termites;<Ref name=a113>Augee, Gooden and Musser, p. 113.</ref> burrowing animals also tend to have low metabolism generally.<Ref name=a114>Augee, Gooden and Musser, p. 114.</ref>
Short-beaked Echidnas can live anywhere that has a good supply of food. They locate food by smell, using sensors in the tip of their snout, and regularly feast on ants and termites.<ref name=arazpa>{{cite web|url=http://www.arazpa.org.au/Short-beaked-Echidna/default.aspx |title=Short-beaked Echidna - Zoo Aquarium Association |publisher=Arazpa.org.au |date= |accessdate=2010-05-29}}</ref> They are powerful diggers, using their clawed front paws to dig out prey and create burrows for shelter. They may rapidly dig themselves into the ground if they cannot find cover when in danger.<ref name=dpiw/>

As Echidnas begin their hibernation period while the weather is still warm, and as food is generally always plentiful, questions have arisen as to why they hibernate, as it is seemingly unecessary for survival.<Ref name=a110>Augee, Gooden and Musser, p. 110.</ref> Conjectures posited include that the Echidnas want to be cautious with their energy reserves or maximise their foraging strategy. Another is that Echidnas were descended from ectothermic ancestors but have taken to periodic endothermy for reproductive reasons, so that the young can develop more quickly.<Ref name=a110/> Supporters of this theory point to the fact that males hibernate earlier than females as they finish their contribution to reproduction first, and that they awake earlier to undero spermatogenosis in preparation for mating, while females and young lag in their annual cycle.<ref name=a110/> During the hibernation period, the animals stay in entirely covered shelter.<Ref name=a111>Augee, Gooden and Musser, p. 111.</ref>

Short-beaked Echidnas can live anywhere that has a good supply of food. They locate food by smell, using sensors in the tip of their snout, and regularly feast on ants and termites.<ref name=arazpa>{{cite web|url=http://www.arazpa.org.au/Short-beaked-Echidna/default.aspx |title=Short-beaked Echidna - Zoo Aquarium Association |publisher=Arazpa.org.au |date= |accessdate=2010-05-29}}</ref> This view is based of its method of shuffling around from side to side somewhat arbitrarily and using its snout in an apparently probing manner.<Ref name=a98/> A study of Echidnas in New England has shown that they tend to dig up scarab beetle larvae in spring when the prey is active, but eschew this prey when it is inactive; this has been used to support the conjecture that Echidnas detect their prey using their hearing.<ref name=a99>Augee, Gooden and Musser, p. 99.</ref> Vision is not believed to be significant in hunting, as blind animals have been observed to survive in the wild.<Ref name=a99/>

The Echidnas use their strong claws to pull apart nests and rotting logs to gain access to their prey.<Ref name=a95>Augee, Gooden and Musser, p. 95.</ref> They are selective of what types of ants and termites they target because some of their would-be prey secrete repulsive liquids, and they have a preference for the eggs, pupae and winged phases of the insects.<Ref>Augee, Gooden and Musser, pp. 96&ndash;97.</ref> The Echidnas hunt most vigorously towards the end of winter and early in spring, when their fat reserves have been depleted after hibernation, or for females who need more reserves for their young.<Ref name=a97>Augee, Gooden and Musser, p. 97.</ref> At this time of the year, ants have high body fat, and the Echidna targets their mounds.<Ref name=a97/> The animals also hunts beetles and earthworms, providing they are small enough to fit in a 5&nbsp;mm gap.<ref name=a97/> The proportion of ants and termites in the diet depends to the availability of the prey, and the termites make up a larger part of the diet in drier areas where they are more plentiful.<Ref name=a98>Augee, Gooden and Musser, p. 98.</ref> However, termites are preferred if available as a smaller proportion of their bodies are indigestible exoskeletons. However, termites from the [[Rhinotermitidae]] family are avoided due to their chemical defences. [[Scarab beetle]] larvae are also a large part of the diet when and where available. In a study conducted in [[New England]] in [[New South Wales]], 37% of the food intake consisted of the beetle larvae, although the Echidna had to squash the prey in its snout as it ingested it, due to size.<Ref name=a98/>

They are powerful diggers, using their clawed front paws to dig out prey and create burrows for shelter. They may rapidly dig themselves into the ground if they cannot find cover when in danger.<ref name=dpiw/> They bend their belly together to shield the soft unprotected part, and can also urinate, giving off a pungent liquid, in an attempt to deter attackers.<Ref name=a93/> Male Echidnas also have a small spur on their rear legs that was believed to a defensive weapon that has since been lost to the evolutionary process.<Ref name=a92/> Echidnas typically try to avoid confrontation with predators due to its lack of anatomical weaponry, using the colour of its spines, which are similar to the vegetation the dry Australian environment to avoid detection. They have a keen ear and tend to become stationary if sound is detected.<Ref name=a92/>


In Australia they are most common in forested areas where there are abundant termite-filled fallen logs. In agricultural areas, they are most likely to be found in uncleared scrub; they may be found in grassland, arid areas, and in the outer suburbs of the capital cities. Little is known about their distribution in New Guinea; they have been found in southern New Guinea between Merauke in the west and the Kelp Welsh River, east of [[Port Moresby]], in the east, where they may be found in open woodland.<ref name="Flannery"/>
In Australia they are most common in forested areas where there are abundant termite-filled fallen logs. In agricultural areas, they are most likely to be found in uncleared scrub; they may be found in grassland, arid areas, and in the outer suburbs of the capital cities. Little is known about their distribution in New Guinea; they have been found in southern New Guinea between Merauke in the west and the Kelp Welsh River, east of [[Port Moresby]], in the east, where they may be found in open woodland.<ref name="Flannery"/>

Echidnas have the ability to swim, and have been seen cooling off in dams during high temperatures. They have also been seen crossing streams and also swimming for brief periods in seas off Kangaroo Island. They swim with their snouts vertical, using it as a snorkel.<Ref name=a92>Augee, Gooden and Musser, p. 92.</ref>


===Reproduction===
===Reproduction===
[[Image:Ameisenigel Unterseite-drawing.jpg|thumb|The underside of a female Short-beaked Echidna; the pouch which carries eggs is towards the rear of the abdomen.]]
[[Image:Ameisenigel Unterseite-drawing.jpg|thumb|The underside of a female Short-beaked Echidna; the pouch which carries eggs is towards the rear of the abdomen.]]
The solitary Short-beaked Echidna looks for a mate between May and September;<ref name=dpiw/> the precise timing of the mating season varies with geographic location. Both males and females give off a strong odour during the mating season. During courtship observed for the first time in 1989males locate and pursue females. Trains of up to ten males may follow a single female in a courtship ritual that may last for up to four weeks; the duration of the courtship period varies with location.<ref name=e38/><ref>Rismiller, P.D., Seymour, R.S., 1991. The echidna. ''Scientific American'' 264, 96–103.</ref> In cooler parts of their range, such as Tasmania, females may mate within a few hours of arousal from hibernation.<ref>Nicol, S.C., Andersen, N.A., and Jones, S.M., 2005. Seasonal variations in reproductive hormones of free-ranging echidnas (''Tachyglossus aculeatus''): interaction between reproduction and hibernation. ''General and Comparative Endocrinology'' 144: 204–210</ref>
The solitary Short-beaked Echidna looks for a mate between May and September;<ref name=dpiw/> the precise timing of the mating season varies with geographic location.<ref name=a77>Augee, Gooden and Musser, p. 77.</ref> In the months before the mating season, the size of the male's testes increases by a factor of three or more before spermatogenesis occurs.<Ref name=a80>Augee, Gooden and Musser, p. 80.</ref> Both males and females give off a strong musky odour during the mating season, by turning their cloacas inside out and wiping them on the ground, secreting a glossly liquid believed to be an aphrodisiac.<ref name=a79>Augee, Gooden and Musser, p. 79.</ref> During courtship&mdash;observed for the first time in 1989&mdash;males locate and pursue females. Trains of up to ten males&mdash;often with the youngest and smallest male at the end of the queue<ref name=a78/>&mdash;may follow a single female in a courtship ritual that may last for up to four weeks; the duration of the courtship period varies with location.<ref name=e38/><ref>Rismiller, P.D., Seymour, R.S., 1991. The echidna. ''Scientific American'' 264, 96–103.</ref> During this time, they forage for food together, and the train often changes composition as some males leave and other join the pursuit.<Ref name=a78>Augee, Gooden and Musser, p. 78.</ref> In cooler parts of their range, such as Tasmania, females may mate within a few hours of arousal from hibernation.<ref>Nicol, S.C., Andersen, N.A., and Jones, S.M., 2005. Seasonal variations in reproductive hormones of free-ranging echidnas (''Tachyglossus aculeatus''): interaction between reproduction and hibernation. ''General and Comparative Endocrinology'' 144: 204–210</ref>

Before mating, the male smells the female, paying particular attention to the [[cloaca]]. This process can take a few hours and the female can reject the suitor by rolling herself into a ball.<Ref name=a80/> After prodding and sniffing her back,<Ref name=a80/> the male is often observed to roll the female onto her side and then assume a similar position himself so that the two animals are abdomen to abdomen, having dug a small crater to lie in. They can lie with heads facing one another, or head to rear.<Ref name=a81>Augee, Gooden and Musser, p. 81.</ref> If more than one male is in the vicinity there may be fighting over the female.<Ref name=a81/> Each side of the bilaterally symmetrical, rosette-like, four-headed penis [similar to that of reptiles and {{convert|7|cm|in}} in length] is used alternately, with the other half being shut down between ejaculations. Sperm bundles of around 100 each appear to confer increased sperm motility, which may provide the potential for sperm competition between males.<Ref name=a81/><ref>Johnston S.D., Smith B., Pyne M., Stenzel D., and Holt W.V. One-Sided Ejaculation of Echidna Sperm Bundles (''Tachyglossus aculeatus''). ''Am. Nat.'' 2007. Vol. 170, p. E000. [AN:42629 DOI:10.1086/522847]</ref> This process takes between half an hour and three.<Ref name=a81/> Each mating results in the production of a single egg, and females are known to mate only once during the breeding season; each mating is successful.<ref>Rismiller, P.D. and McKelvey, M.W. 2000. Frequency of breeding recruitment in the Short-beaked Echidna, ''Tachyglossus aculeatus''. ''Journal of Mammalogy'' 81:1–17</ref>

Fertilisation occurs in the [[oviduct]]. [[Gestation]] takes between 21 and 28 days after copulation,<ref name=a84/> during which time the female constructs a nursery burrow. Following the gestation period, a single rubbery-skinned egg<ref name=e38/> between {{convert|13|and|17|mm|1}} in diameter and {{convert|1.5|and|2.0|g|oz}} in weight<ref name=a84>Augee, Gooden and Musser, p. 84.</ref> is laid from her cloaca directly into a small, backward-facing pouch that has developed on her abdomen. The egg is ovoid, leathery, soft and cream-coloured. Between laying and hatching, some females continue to forage for food while others dig a burrow and rest there until hatching.<ref name=a84/> Ten days after it is laid, the egg hatches within the pouch.<ref name=dpiw/><Ref name=a84/> The embryo develops an "egg tooth" during incubation, which it uses to tear open the egg; the tooth disappears soon after hatching.<Ref name=a85>Augee, Gooden and Musser, p. 85.</ref>

Hatchlings are about {{convert|1.5|cm|in|1}} long and weigh between {{convert|0.3|and|0.4|g|oz}}.<ref name = "Rismiller2003">Rismiller, P.D. and McKelvey, M.W. 2003. Body mass, age and sexual maturity in short-beaked echidnas, ''Tachyglossus aculeatus''. ''Comparative Biochemistry and Physiology. A, Molecular & Integrative Physiology'' 136:851–865</ref><ref name=a85/> After hatching, young Echidnas are known as ''puggles''. Although newborns are still semitranslucent and still surrounded by the remains of the egg yolk, and the eyes are still barely developed, they already have well-defined front limbs and digits that allow it to climb on its mother's body.<Ref name=a85/> Hatchlings attach themselves to their mothers' milk areolae, specialised patches on the skin that secrete milk&mdash;monotremes lack nipples&mdash;through approximately 100&ndash;150 pores.<ref name=e38/><ref name=dpiw/><ref name=a85/> The puggles were thought to have imbibed the milk by licking the mother's skin, but this has been superseded by a belief that it feeds by sucking the areola.<Ref name=a86/>


They have been observed ingesting large amounts during each feeding period, and mothers may leave them unattended in the burrow for between five and ten days in order to find food.<Ref name=a86>Augee, Gooden and Musser, p. 86.</ref> Studies of captive Echidnas have shown that they can ingest milk once every two or three days and then increase their mass by 20% in one milk-drinking session lasting between one and two hours.<Ref name=a86/> Around 40% of the milk weight is converted into body mass, and as such a high proportion of milk is converted into growth, a correlation with the growth of the puggle and its mother's size has been observed.<Ref name=a86/> By the time the puggle is around {{convert|200|g|oz}} it is left in the burrow while the mother forages for food, and it reaches around {{convert|400|g|oz}} after around two months.<Ref name=a86/> Juveniles are eventually ejected from the pouch at around two to three months of age, because of the continuing growth in the length of their spines.<ref name=dpiw/><Ref name=a86/> During this period, the young are left in a covered burrow while the mother forages, and the young are often predated.<Ref name=a88/> Suckling gradually decreases until juveniles are weaned at about six months of age. The duration of lactation is about 200 days,<ref name=e38/><ref name=a86/> and the young leave the burrow after 180 to 205&nbsp;days, usually in January or February, at which time they are around {{convert|800|and|1300|g|oz}}. There is no contact between the mother and young after this point.<Ref name=a88>Augee, Gooden and Musser, p. 88.</ref>
Before mating, the male smells the female, paying particular attention to the [[cloaca]]. The male is often observed to roll the female onto her side and then assume a similar position himself so that the two animals are abdomen to abdomen. Each side of the bilaterally symmetrical, rosette-like, four-headed penis [similar to that of reptiles] is used alternately, with the other half being shut down between ejaculations. Sperm bundles of around 100 each appear to confer increased sperm motility, which may provide the potential for sperm competition between males.<ref>Johnston S.D., Smith B., Pyne M., Stenzel D., and Holt W.V. One-Sided Ejaculation of Echidna Sperm Bundles (''Tachyglossus aculeatus''). ''Am. Nat.'' 2007. Vol. 170, p. E000. [AN:42629 DOI:10.1086/522847]</ref> Each mating results in the production of a single egg, and females are known to mate only once during the breeding season; each mating is successful.<ref>Rismiller, P.D. and McKelvey, M.W. 2000. Frequency of breeding recruitment in the Short-beaked Echidna, ''Tachyglossus aculeatus''. ''Journal of Mammalogy'' 81:1–17</ref>


The composition of the milk secreted by the mother changes over time. At the moment of birth, the solution is dilute and contains 1.25% fat, 7.85% protein, and 2.85% carbohydrates and minerals. Mature milk has much more concentrated nutrients, with 31, 12.4 and 2.8% of the aforementioned quantities respectively.<Ref name=a86/> Near weaning, the protein level continues to increase this is conjecture to be due to the need for keratin synthesis for hair and spines, to provide defences against the cold weather and predators.<Ref>Augee, Gooden and Musser, pp. 86&ndash;87.</ref>
Fertilisation occurs in the [[oviduct]]. [[Gestation]] takes between 21 and 28 days, during which time the female constructs a nursery burrow. Following the gestation period, a single rubbery-skinned egg<ref name=e38/> between {{convert|13|and|17|mm|1}} in diameter{{Citation needed|date=April 2010}} is laid directly into a small, backward-facing pouch that has developed on her abdomen. Ten days after it is laid, the egg hatches within the pouch.<ref name=dpiw/> The embryo develops an "egg tooth" during incubation, which it uses to tear open the egg; the tooth disappears soon after hatching.


The principal carbohydrate components of the milk are fucosyllactose and saialyllactose; it has a high iron content, which gives it a pink colour.<Ref name=a87>Augee, Gooden and Musser, p. 87.</ref> The high iron content and low levels of free lactose contrasts with other eutherian mammals. LActose production is believed to proceed along the same lines as in the platypus.<Ref name=a87/>
Hatchlings are about {{convert|1.5|cm|in|1}} long and weigh between {{convert|0.3|and|0.4|g|oz}}.<ref name = "Rismiller2003">Rismiller, P.D. and McKelvey, M.W. 2003. Body mass, age and sexual maturity in short-beaked echidnas, ''Tachyglossus aculeatus''. ''Comparative Biochemistry and Physiology. A, Molecular & Integrative Physiology'' 136:851–865</ref> After hatching, young Echidnas are known as ''puggles''. Hatchlings attach themselves to their mothers' milk areolae, specialised patches on the skin that secrete milk (monotremes lack nipples).<ref name=e38/><ref name=dpiw/> The way in which puggles imbibe the milk is not yet known, but they have been observed ingesting large amounts during each feeding period, and mothers may leave them unattended in the burrow for between five and ten days. The principal components of the milk are fucosyllactose and saialyllactose; it has a high iron content, which gives it a pink colour.{{Citation needed|date=April 2010}} Juveniles are eventually ejected from the pouch at around two to three months of age, because of the continuing growth in the length of their spines.<ref name=dpiw/> Suckling gradually decreases until juveniles are weaned at about six months of age. The duration of lactation is about 200 days,<ref name=e38/> and the young leave the burrow after 180 to 240 days.


The age of sexual maturity is uncertain, but may be four to five years. A twelve-year field study, published in 2003, found that the Short-beaked Echidna reaches sexual maturity between five and twelve years of age, and that the frequency of reproduction varies from once every two years to once every six years.<ref name = "Rismiller2003"/> The Short-beaked Echidna can live as long as forty-five years in the wild.<ref name=vic>{{cite web|url=http://www.parkweb.vic.gov.au/education/factfiles/15.htm |title=Parks Victoria Fact File |publisher=Parkweb.vic.gov.au |date= |accessdate=2010-05-29}}</ref>
The age of sexual maturity is uncertain, but may be four to five years. A twelve-year field study, published in 2003, found that the Short-beaked Echidna reaches sexual maturity between five and twelve years of age, and that the frequency of reproduction varies from once every two years to once every six years.<ref name = "Rismiller2003"/> The Short-beaked Echidna can live as long as 45 years in the wild,<ref name=vic>{{cite web|url=http://www.parkweb.vic.gov.au/education/factfiles/15.htm |title=Parks Victoria Fact File |publisher=Parkweb.vic.gov.au |date= |accessdate=2010-05-29}}</ref> and the longest-lived echidna in captivity reached 49 years of age in a zoo in [[Philadelphia]] in the US.<Ref name=a93>Augee, Gooden and Musser, p. 93.</ref> Echidnas contrast to other mammals in that their rates of reproduction and metabolism are lower, and they live longer, as though in slow motion,<Ref name=a93/> something caused at least in part by their low body temperature, which rarely exceeds 33<sup>o</sup/> even when they are not hibernating.<Ref name=a93/>


Like its fellow monotreme the Platypus, the Short-beaked Echidna has a system of multiple [[sex-determination system|sex chromosomes]], in which males have four [[Y chromosome]]s and five [[X chromosome]]s. Male individuals appear to be X<sub>1</sub>Y<sub>1</sub>X<sub>2</sub>Y<sub>2</sub>X<sub>3</sub>Y<sub>3</sub>X<sub>4</sub>Y<sub>4</sub>X<sub>5</sub> ([http://genomebiology.com/2007/8/11/R243/figure/F2 figure]<ref name = "Rensetal2007"/>), while females are X<sub>1</sub>X<sub>1</sub>X<sub>2</sub>X<sub>2</sub>X<sub>3</sub>X<sub>3</sub>X<sub>4</sub>X<sub>4</sub>X<sub>5</sub>X<sub>5</sub>. Weak identity between chromosomes results in [[meiosis|meiotic pairing]] that yields only two possible [[genotype]]s of sperm, X<sub>1</sub>X<sub>2</sub>X<sub>3</sub>X<sub>4</sub>X<sub>5</sub> or Y<sub>1</sub>Y<sub>2</sub>Y<sub>3</sub>Y<sub>4</sub>, thus preserving this complex system.<ref name = "Rensetal2007">{{cite journal | author = Rens, W., et al | title = The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z | journal = Genome Biology | volume = 8 | pages = R243 | url=http://genomebiology.com/2007/8/11/R243 | pmid=18021405 | doi = 10.1186/gb-2007-8-11-r243 | year = 2007 | issue = 11 | pmc = 2258203 }}</ref>
Like its fellow monotreme the Platypus, the Short-beaked Echidna has a system of multiple [[sex-determination system|sex chromosomes]], in which males have four [[Y chromosome]]s and five [[X chromosome]]s. Male individuals appear to be X<sub>1</sub>Y<sub>1</sub>X<sub>2</sub>Y<sub>2</sub>X<sub>3</sub>Y<sub>3</sub>X<sub>4</sub>Y<sub>4</sub>X<sub>5</sub> ([http://genomebiology.com/2007/8/11/R243/figure/F2 figure]<ref name = "Rensetal2007"/>), while females are X<sub>1</sub>X<sub>1</sub>X<sub>2</sub>X<sub>2</sub>X<sub>3</sub>X<sub>3</sub>X<sub>4</sub>X<sub>4</sub>X<sub>5</sub>X<sub>5</sub>. Weak identity between chromosomes results in [[meiosis|meiotic pairing]] that yields only two possible [[genotype]]s of sperm, X<sub>1</sub>X<sub>2</sub>X<sub>3</sub>X<sub>4</sub>X<sub>5</sub> or Y<sub>1</sub>Y<sub>2</sub>Y<sub>3</sub>Y<sub>4</sub>, thus preserving this complex system.<ref name = "Rensetal2007">{{cite journal | author = Rens, W., et al | title = The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z | journal = Genome Biology | volume = 8 | pages = R243 | url=http://genomebiology.com/2007/8/11/R243 | pmid=18021405 | doi = 10.1186/gb-2007-8-11-r243 | year = 2007 | issue = 11 | pmc = 2258203 }}</ref>
Line 89: Line 131:
[[Image:Echidna - melbourne zoo.jpg|thumb|left|A Short-beaked Echidna on the move]]
[[Image:Echidna - melbourne zoo.jpg|thumb|left|A Short-beaked Echidna on the move]]


The Short-beaked Echidna is common throughout most of temperate Australia and lowland New Guinea, and is not listed as endangered.<ref name=e38/><ref name=dpiw>{{cite web|url=http://www.dpiw.tas.gov.au/internnsf/WebPages/BHAN-5357K5?open |title=DPIW - Short-beaked Echidna |publisher=Dpiw.tas.gov.au |date=2009-08-10 |accessdate=2010-05-29}}</ref> In Australia, the number of Short-beaked Echidnas has been less affected by land clearance than have some other species, since Short-beaked Echidnas do not require a specialized habitat beyond a good supply of ants and termites.<ref name=dpiw/> Despite their spines, they are preyed on by [[birds of prey|birds]], the [[Tasmanian Devil]],<ref name=dpiw/> dingoes,<ref name=e38/> cats and foxes.{{Citation needed|date=April 2010}} They were eaten by [[indigenous Australians]] and the early European settlers of Australia.<ref name=dpiw/> The most common threats to the animal in Australia are motorized vehicles and habitat destruction, which have led to localized extinctions. Infection with the introduced parasite ''[[Spirometra erinaceieuropaei]]'' is fatal for the Echidna. The Wildlife Preservation Society of Queensland runs an Australia-wide survey called ''Echidna Watch'' to monitor the species in Australia.
The Short-beaked Echidna is common throughout most of temperate Australia and lowland New Guinea, and is not listed as endangered.<ref name=e38/><ref name=dpiw>{{cite web|url=http://www.dpiw.tas.gov.au/internnsf/WebPages/BHAN-5357K5?open |title=DPIW - Short-beaked Echidna |publisher=Dpiw.tas.gov.au |date=2009-08-10 |accessdate=2010-05-29}}</ref> In Australia, the Echidna remains widespread across a wide range of conditions, including urban outskirts, coastal forests and dry inland areas. They are especially widespread in Tasmania and on [[Kangaroo Island]].<Ref name=a120/>


The most common threats to the animal in Australia are motor vehicles and habitat destruction, which have led to localized extinctions.<ref name=a120>Augee, Gooden and Musser, p. 120.</ref> In Australia, the number of Short-beaked Echidnas has been less affected by land clearance than have some other species, since Short-beaked Echidnas do not require a specialized habitat beyond a good supply of ants and termites.<ref name=dpiw/> As a result, they can survive in cleared land if the cut-down wood is left in the area, as the logs can be used as shelter and a source of insects. However, areas where the land has been completely cleared for single crops that can be mechanically harvested, such as wheatfields, have seen extinctions.<ref name=a120/> Over a decade-long period, around one third of Echidna deaths reported to wildlife authorities in Victoria were due to motor vehicles, and the majority of wounded animals handed in were traffic accident victims.<ref name=a121/> Studies have shown that Echidnas often choose to traverse drainage culverts under roads, so this is seen as a viable means of reducing deaths on busy roads in rural areas or national parks where the animals are more common.<ref name=a121/>
Captive breeding is difficult, partly due to the relatively infrequent breeding cycle.<ref>{{cite web|url=http://www.perthnow.com.au/news/western-australia/baby-echidnas-make-first-appearance-at-perth-zoo/story-e6frg15c-1225794333104 |title=Baby echidnas make first appearance at Perth Zoo |publisher=Perthnow.com.au |date=2009-11-04 |accessdate=2010-05-29}}</ref> Only five zoos have managed to breed a captive Short-beaked Echidna, but no captive-bred young have survived to maturity. This has conservation implications for the endangered species of echidna from the genus ''Zaglossus'', and to a lesser extent for the Short-beaked Echidna.

Despite their spines, they are preyed on by [[birds of prey|birds]], the [[Tasmanian Devil]],<ref name=dpiw/> dingoes,<ref name=e38/> snakes, lizards, goannas, cats and foxes,<Ref name=a1201>Augee, Gooden and Musser, pp. 120&ndash;121.</ref> although almost all victims are young. Goannas are known for their digging abilities and strong sense of smell and are believed to be have been the main predators of the Echidna before the introduction of most of the other predators by European settlers.<ref name=a1201/> Dingoes are known to kill Echidnas by rolling them over onto their backs and attacking their underbellies.<ref name=a120/> A tracking study of a small number of Echidnas on Kangaroo Island concluded that goannas and cats were the main predators, although it has been speculated that foxes&mdash;absent in Kangaroo Island&mdash;would also be a major threat as the Echidna density in Tasmania&mdash;which is free from foxes&mdash;is higher in other parts of Australia.<ref name=a1201/>

They were eaten by [[indigenous Australians]] and the early European settlers of Australia.<ref name=dpiw/> In contrast, hunting and eating of the Echidna in New Guinea has increased over time and caused a decline in the population and distribution areas; it is now believed to have disappeared from highland areas. The killing of Echidnas were a taboo in traditional culture, but since the tribespeople have become increasingly Christianised by western missionaries, hunting has increased, and the animals have been more easily tracked down due to the use of dogs.<ref name=a119>Augee, Gooden and Musser, p. 119.</ref>

Infection with the introduced parasite ''[[Spirometra erinaceieuropaei]]'' is considered fatal for the Echidna. This is a waterborne infection contracted through sharing drinking areas with infected dogs, foxes, cats and dingos, which do not die from the parasite. The infection is seen as being more dangerous in drier areas where more animals are sharing less bodies of water, increasing the chance of transmission.<ref name=a121>Augee, Gooden and Musser, p. 121.</ref> The Wildlife Preservation Society of Queensland runs an Australia-wide survey called ''Echidna Watch'' to monitor the species in Australia. Echidnas are also known to be affected by tapeworms, protozoal and herpes-like viral infections, but there is little knowledge of how it affects the health of the animals or the populations.<Ref name=a122>Augee, Gooden and Musser, p. 122.</ref>

Although it considered easy to keep Echidnas healthy in captivity,<Ref>Augee, Gooden and Musser, pp. 122&ndash;125.</ref> breeding is difficult, partly due to the relatively infrequent cycle. In 2009, [[Perth Zoo]] managed to breed some captive Short-beaked Echidnas.<ref>{{cite web|url=http://www.perthnow.com.au/news/western-australia/baby-echidnas-make-first-appearance-at-perth-zoo/story-e6frg15c-1225794333104 |title=Baby echidnas make first appearance at Perth Zoo |publisher=Perthnow.com.au |date=2009-11-04 |accessdate=2010-05-29}}</ref> Up until 2006, only five zoos have managed to breed a captive Short-beaked Echidna, but no captive-bred young have survived to maturity.<Ref name=a126>Augee, Gooden and Musser, p. 126.</ref> Of these five institutions, only one in Australia&mdash;[[Sydney]]'s [[Taronga Zoo]]&mdash;managed to breed echidnas, in 1977. The other four cases occurred in the northern hemisphere, two in the United States and the others in western Europe. In these cases, breeding occurred six months out of phase compared to Australia after the animals had adapted to northern hemisphere seasons.<Ref name=a126/> The failure of captive breeding programs has conservation implications for the endangered species of echidna from the genus ''Zaglossus'', and to a lesser extent for the Short-beaked Echidna.<Ref name=a126/>


==Cultural references==
==Cultural references==
Line 109: Line 159:
===General references===
===General references===
<div class="references-small">
<div class="references-small">
*Augee, M and Gooden, B. 1993. ''Echidnas of Australia and New Guinea''. Australian National History Press, Sydney ISBN 978-0-86840-046-4
*Augee, M. L. and Gooden, B. A. 1993. ''Echidnas of Australia and New Guinea''. Australian National History Press, Sydney ISBN 978-0-86840-046-4
*Augee, M. L., Gooden, B. A. and Musser, A. 2006. ''Echidna : extraordinary egg-laying mammal''. Collingwood, Victoria, CSIRO Publishing ISBN: 0643092048
*Augee, M.L. 1983. R. Strahan Ed. ''The Australian Museum Complete Book of Australian Mammals''. p. 8–9. Angus & Robertson ISBN 0-207-14454-0
*Augee, M. L. 1983. R. Strahan Ed. ''The Australian Museum Complete Book of Australian Mammals''. pp.&nbsp;8–9. Angus & Robertson ISBN 0-207-14454-0
* Egerton, L. ed. 2005. ''Encyclopedia of Australian wildlife''. Reader's Digest ISBN 1-876689-34-X
* Egerton, L. ed. 2005. ''Encyclopedia of Australian wildlife''. Reader's Digest ISBN 1-876689-34-X
*Griffiths, M. 1989. [http://www.deh.gov.au/biodiversity/abrs/publications/fauna-of-australia/pubs/volume1b/15-ind.pdf Tachyglossidae]. Pp. 407–435 in ''Fauna of Australia'' (D. W. Walton and B. J. Richardson, eds.). Mammalia, Canberra, Australian Capital Territory 1B:1–1227.Adam blundell rocks
*Griffiths, M. 1989. [http://www.deh.gov.au/biodiversity/abrs/publications/fauna-of-australia/pubs/volume1b/15-ind.pdf Tachyglossidae]. pp.&nbsp;407–435 in ''Fauna of Australia'' (D. W. Walton and B. J. Richardson, eds.). Mammalia, Canberra, Australian Capital Territory 1B:1–1227.</div>
</div>


==External links==
==External links==
Line 123: Line 173:
*[http://www.wildlife.org.au/wildlife.php?page=w-echidna.html Wildlife Preservation Society of Queensland - Echidna Watch]
*[http://www.wildlife.org.au/wildlife.php?page=w-echidna.html Wildlife Preservation Society of Queensland - Echidna Watch]
*[http://www.australianmammals.org.au/Species/Echidna%20Profile.htm Australian Mammal Species Files]
*[http://www.australianmammals.org.au/Species/Echidna%20Profile.htm Australian Mammal Species Files]
{{featured article}}
{{Featured article}}


{{Monotremata}}
{{Monotremata}}
{{Use dmy dates|date=September 2010}}


{{DEFAULTSORT:Short-Beaked Echidna}}
[[Category:Monotremes]]
[[Category:Monotremes]]
[[Category:Mammals of New Guinea]]
[[Category:Mammals of New Guinea]]
Line 140: Line 192:


{{Link GA|fr}}
{{Link GA|fr}}

{{Link FA|ca}}
{{Link FA|ca}}
{{Link FA|he}}
{{Link FA|he}}

[[az:Avstraliya yexidnası]]
[[az:Avstraliya yexidnası]]
[[br:Ekidne pigos berr]]
[[br:Ekidne pigos berr]]
Line 150: Line 200:
[[da:Det kortnæbbede myrepindsvin]]
[[da:Det kortnæbbede myrepindsvin]]
[[de:Kurzschnabeligel]]
[[de:Kurzschnabeligel]]
[[et:Sipelgasiil]]
[[es:Tachyglossus]]
[[es:Tachyglossus]]
[[et:Sipelgasiil]]
[[fa:خارپشت پوزه‌کوتاه]]
[[fa:خارپشت پوزه‌کوتاه]]
[[fr:Échidné à nez court]]
[[fr:Échidné à nez court]]

Revision as of 06:23, 9 September 2010

Short-beaked Echidna[1]
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Tachyglossus

(Illiger, 1811)
Species:
T. aculeatus
Binomial name
Tachyglossus aculeatus
(Shaw, 1792)
Subspecies
Range of Short-beaked Echidna

The Short-beaked Echidna (Tachyglossus aculeatus), also known as the Spiny Anteater because of its diet of ants and termites, is one of four living species of echidna and the only member of the genus Tachyglossus. The Short-beaked Echidna is covered in fur and spines and has a distinctive snout and a specialised tongue, which it uses to catch its prey at a great speed. Like the other extant monotremes, the Short-beaked Echidna lays eggs; the monotremes are the only group of mammals to do so.

The Echidna has extremely strong front limbs and claws due to its mechanical advantage. This allows it to burrow quickly with great power. As it needs to be able to survive underground, it has a great tolerance to high levels of carbon dioxide and a lack of oxygen. It has no weapons or fighting ability and repels predators by curling into a spherical ball and deterring opponent with its spines. The Echidna lacks the ability to sweat and cannot deal with heat well, so it tends to avoid daytime activity in hot weather and can swim if needed. The Echidna's snout has mechanical and electroreceptors that help it to detect what is around it, and it also has the ability to reason.

During the winter, it goes into deep torpor and hibernation to save energy and reduce metabolism, before emerging as the temperature increases to breed. Female Echidnas only lay one egg a year, and the mating period is the only time that the otherwise solitary animals meet one another; the father has no further contact with the mother after mating. After the young is born, it is only the size of a grape, but grows rapidly on the mother's milk, which is very rich in nutrients. After a period they are too large and spiky to stay in the pouch, and after around six months they leave the burrow and have no more contact with their mother.

The species is found throughout Australia, where it is the most widespread native mammal, and in coastal and highland regions of southwestern New Guinea, where it is known as the Mungwe in the Daribi and Chimbu languages.[3] It is not threatened with extinction, but human activities, such as hunting, habitat destruction, and the introduction of foreign predatory species and parasites, have reduced the distribution of the Short-beaked Echidna in Australia. Attempts to breed the Echidna in captivity have not been succesful to date, with none reaching maturity. However, as the Echidna can survive merely by foraging dead logs for ants and termites, it can survive in environments with restricted resources.


Taxonomy and naming

The Short-beaked Echidna was first described by George Shaw in 1792. He named the species Myrmecophaga aculeata, thinking it might be related to the South American anteater. Since Shaw first described the species, its name has undergone four revisions: from M. aculeata to Ornithorhynchus hystrix, Echidna hystrix, Echidna aculeata and, finally, Tachyglossus aculeatus.[4][5] The name Tachyglossus means "quick tongue",[4] in reference to the speed with which the Echidna uses its tongue to catch ants and termites,[4] and aculeatus means "spiny" or "equipped with spines".[4]

The Short-beaked Echidna is the only member of its genus,[6] sharing the family Tachyglossidae with the extant species of the genus Zaglossus that occur in New Guinea.[7] Zaglossus species, which include the Western Long-beaked, Sir David's Long-beaked and Eastern Long-beaked Echidna,[8] are all significantly larger than T. aculeatus, and their diet consists mostly of worms and grubs rather than ants and termites.[9] Species of the Tachyglossidae are egg-laying mammals; together with the related family Ornithorhynchidae, they are the only extant monotremes in the world.[10]

There are five subspecies of the Short-beaked Echidna, each found in a different geographical location. The subspecies also differ from one another in their hairiness, spine length and width, and the size of the grooming claws on their hind feet.[11]

The earliest fossils of the Short-beaked Echidna date back around 15 million years ago to the Pleistocene era, and the oldest specimens were found in caves in South Australia, often together with fossils of the Long-beaked Echidna from the same period. The ancient Short-beaked Echidnas are considered to be identical to their contemporary descendants apart from the fact that the ancestors are around 10%.[13][10] This "post-Pleistocene dwarfing" affects many Australian mammals.[10] Part of the last radiation of monotreme mammals, Echidnas are believed to have evolutionally diverged from the platypus around 65 million years ago, between the Cretacious and Tertiary periods.[10] However, the Echidna's pre-Pleistocene heritage has not been traced yet and the lack of teeth on the fossils found thus far have made it impossible to use dental evidence.[14]

T. a. setosus, Barrington, Tasmania

The Short-beaked Echidna was commonly called the Spiny Anteater in older books, though this term has fallen out of fashion since the Echidna bears no relation to the true anteaters. It has a variety of names in the indigenous languages of the regions where it is found. The Noongar people from southwestern Western Australia call it the Nyingarn. In Central Australia southwest of Alice Springs, the Pitjantjatjara term is tjilkamata or tjirili, from the word tjiri for spike of Porcupine Grass (Triodia irritans). The word can also mean slowpoke.[15] In central Cape York Peninsula, it is called (minha) kekoywa in Pakanh, where minha is a qualifier meaning 'meat' or 'animal', (inh-)ekorak in Uw Oykangand and (inh-)egorag in Uw Olkola, where inh- is a qualifier meaning 'meat' or 'animal'.[16] In the highland regions of southwestern New Guinea it is known as the Mungwe in the Daribi and Chimbu languages.[3]

Description

Spines and fur of an echidna

Short-beaked Echidnas are typically 30 to 45 centimetres (12 to 18 in) in length, have a 75-millimetre (3 in) snout, and weigh between 2 and 5 kilograms (4.4 and 11.0 lb).[17] However, the Tasmanian subspecies, T. a. setosus, is smaller than its Australian mainland counterparts.[18] Because the neck is not externally visible, the head and body appear to merge together.[19] The earholes are on either side of the head,[19] with no external pinnae.[19] The eyes are small, approximately a 9 mm (0 in) diameter sphere and at the base of the wedge-shaped snout.[20] The nostrils and the mouth are at the distal end of the snout;[19] the mouth of the Short-beaked Echidna cannot open wider than 5 mm (0.2 in).[21] The body of the Short-beaked Echidna is, with the exception of the underside, face and legs, covered with cream-coloured spines. The spines, which may be up to 50 mm (2 in) long, are modified hairs,[22] mostly made of keratin.[23] Insulation is provided by fur between the spines, which ranges in colour from honey to a dark reddish-brown and even black; the underside and short tail are also covered in fur.[22] Colouration of the fur and spines varies with geographic location. The Echidna's fur may be infested with what is said to be the world's largest flea, Bradiopsylla echidnae, which is about 4 mm (0.16 in) long.[22]

The limbs of the Short-beaked Echidna are adapted for rapid digging: they are short and have strong claws.[22] These strong and stout limbs allow the Echidna to tear apart large logs and move paving stones, and one has been recorded moving a 13.5 kilograms (30 lb) stone; there has also been a report of a captive Echidna moving a refrigerator in the home of a scientist around the room.[24] The power of the limbs are based on strong musculature, particularly around the shoulder and torso area.[25] The mechanical advantage of its arm is greater than that of humans as its biceps connect the shoulder to forearm at a point further down than for humans,[26] and the chunky humerus allows for larger areas for more muscle to form.[27]

The claws on the hind feet are elongated and curve backwards to enable cleaning and grooming between the spines. Like the Platypus, the Echidna has a low body temperature—between 30 and 32 °C (86 and 90 °F)—but, unlike the Platypus, which shows no evidence of torpor or hibernation, the body temperature of the Echidna may fall as low as 5 °C (41 °F).[28] The Echidna does not pant or sweat[29] and normally seeks shelter in hot conditions.[30] Despite the inability to sweat, the Echidna still lose water as they exhale. The snout is believed to be crucial in restricting this loss to sustainable levels, through a bony labyrinth that has a refrigerator effect and helps to condense water vapour in the breath.[31] The Echidna does not have highly concentrated urine, and around half of the estimated daily water loss of 120 grams (4.2 oz) occurs in this manner, while most of the rest is through the skin and respiratory system.[32] Most of this is replenished by the Echidna's substantial eating of termites—one laboratory study reported that it would ingest around 147 grams (5.2 oz) a day, most of which was water.[32] This can be supplemented by drinking water if available, or licking morning dew from flora.[33]

In autumn and winter the Echidna shows periods of torpor or deep hibernation.[34] Because of the low body temperature of the Short-beaked Echidna, it becomes sluggish in very hot and very cold weather.[35]

Like all monotremes, it has one orifice,[36] known as the cloaca, for the passage of faeces, urine and reproductive products.[34] The male has internal testes, no external scrotum and a highly unusual penis with four knobs on the tip.[37] The gestating female develops a pouch on its underside, where it raises its young.[38]

A Short-beaked Echidna curled into a ball; the snout is visible on the right.

The musculature of the Short-beaked Echidna has a number of unusual aspects. The panniculus carnosus is an enormous muscle that is just beneath the skin and covers the entire body. By contraction of various parts of the panniculus carnosus, the Short-beaked Echidna can change shape, the most characteristic shape change being achieved by rolling itself into a ball when threatened, so protecting its belly and presenting a defensive array of sharp spines. It has one of the shortest spinal cords of any mammal, extending only as far as the thorax.[39] Whereas the human spinal cord ends at the first or second lumar vertebrae, for the Echidna it occurs at the seventh thoracic vertebra.[40] It has been conjectured that the shorter spinal cord allows the Echidna the flexibility to wrap into a ball.[40]

The musculature of the face, jaw and tongue is specialised to allow the Echidna to feed. The tongue of the Short-beaked Echidna is the animal's sole means of catching prey, and can protrude up to 180 mm (7 in)) outside the snout.[17] The snout's shape, resembling a double wedge, gives it a significant mechanical advantage in generating a large moment and therefore makes it efficient for digging to reach prey or to build a shelter.[41]The tongue is sticky because of the presence of glycoprotein-rich mucous, which both lubricates movement in and out of the snout and helps to catch ants and termites, which adhere to it. Protrusion of the tongue is achieved by contracting circular muscles that change the shape of the tongue and force it forwards and contracting two genioglossal muscles attached to the caudal end of the tongue and to the mandible. The protruded tongue is stiffened by the rapid flow of blood, allowing it to penetrate wood and soil. Retraction requires the contraction of two internal longitudinal muscles, known as the sternoglossi. When the tongue is retracted, the prey is caught on backward-facing keratinous "teeth", located along the roof of the buccal cavity, allowing the animal both to capture and grind food.[21][42] The tongue moves with great speed, and has been measured to move in and out of the snout 100 times a minute.[17][43] This is partly achieved through the elasticity of the tongue and the conversion of elastic potential energy into kinetic energy.[42] The tongue is very flexible, particularly at the end, allowing it to bend in U-turns and catch insects attempting to flee in their twisty nests or mounds.[44] The tongue also has an ability to avoid picking up splinters while foraging in logs; the reason for this is unknown.[42] It can eat quickly; a specimen of around 3 kilograms (6.6 lb) can ingest 200 grams (7.1 oz) of termites in ten minutes.[45]

The Echidna has a stomach that is quite apart from other mammals. It is devoid of secretory glands and has coenfied stratified epithelium, which resembles horny skin.[45] Unlike other mammals, which typically have highly acidic stomachs, the Echidna has low levels of acidity, almost neutral with pH in the 6.2–7.4 range.[45] The stomach is elastic and the gastric peristalsis grinds dirt particulates and shredded insects together. The digestion occurs in the small intestine, which is around 3.4 metres (11 ft) in length. The insect exoskeletons and dirt are not digested and ejected in the waste.[45]

Numerous physiological adaptations aid the lifestyle of the Short-beaked Echidna. Because the animal burrows, it can tolerate very high levels of carbon dioxide in inspired air, and will voluntarily remain in situations where carbon dioxide concentrations are high. It can dig up to a metre into the ground to retrieve ants or evade predators, and can survive with low oxygen when the area is engulfed by bushfires. The Echidna can also dive underwater, an ability that can help it to survive sudden floods.[33] During these situations the heart rate drops to around 12 beats per minute, around one fifth of the rate at rest. This process is believed to save oxygen for the heart and brain, which are the most sensitive to such a shortage, and laboratory testing has revealed that the Echidna's cardiovascular system is similar to that of the seal.[33]

The Echidna's optical system is an uncommon hybrid of both mammalian and reptilian characteristics. The cartilaginous layer beneath the scleral layer of the eyeball is similar to that of reptiles and avians.[20] The small cornea's surface is keratinised and hardened, possibly an evolution to protect the Echidna from chemicals secreted by preyed insects or self-impalement when it rolls itself up, something that has been observed.[46] The Echidna has the flattest lens of any animal, giving it the longest focal length. This similarity to primates and humans allow it to see distant objects clearly.[47] Unlike placental mammals—including humans—the Echidna does not have a ciliary muscle to distort the geometry of the lens and thereby change the focal length and allow objects at different distances to be viewed clearly, and it believed that the whole eye distorts so that the distance between the lens and screen instead changes to allow focusing.[47] The visual ability of an Echidna is not great and it it not known whether it can perceive colour; however, it can distinguish between black and white, and horizontal and vertical stripes. Eyesight is not a crucial factor in the animal's ability to survive as blind Echidnas are able to live healthily.[48]

Its ear is sensitive to low-frequency sound, which may be ideal for detecting sounds emitted by termites and ants underground.[49] The pinnae are obscured and covered by hair, mean that opponents can not grabb them in an attack, and that prey or foreign material cannot enter, although ticks are known to reside there.[50] The ear has a macula which is very large compared to other animals. It is used as a gravity sensor to orient the Echidna. The large size is speculated to be due to importance of burrowing downwards for an Echidna.[51]

The leathery snout is keratinised and covered in mechano- and thermoreceptors, which provide information about the surrounding environment.[52][49] These nerves protrude through microscopic holes at the end of the snout.[53] It also has mucous glands on the end of the snout that act as electroreceptors. It can detect electric fields of 1.8 mV/cm—1,000 times more sensitive than humans—and dig up buried batteries.[54] The Echidna has a series of push rods protruding from their snout. These are columns of flattened, spinous cells, with roughly an average diameter of 50 micrometres and a length of 300 micrometres. The number of push rods per square millimetre of skin is estimated to be 30–40.[55] It is believed that longitudinal waves can be picked up and transmitted through the rods and are mechanical sensors for the Echidna. It is thought that prey can be detected by these rods.[56]

The Short-beaked Echidna has a well-developed olfactory system, which may be used to detect mates and prey. It has a highly sensitive optic nerve, and has been shown to have visual discrimination and spatial memory comparable to those of a rat.[57] The brain and central nervous system of the Short-beaked Echidna have been extensively studied for evolutionary comparison with placental mammals, particularly with its fellow monotreme, the Platypus.[58][59] The average brain volume is 25 mL, similar to a cat of approximately the same size,[60] but while the Platypus has a largely lissencephalic and smooth brain, the Echidna has a heavily folded and fissured gyrencephalic brain similar to humans, which is seen as a sign of a highly neurologically advanced animal.[61] The cerebral cortex is thinner, the brain cells larger and more densely packed and organised in the Echidna than the Platypus, suggesting that evolutionary divergence must have occurred long ago.[61] Almost half of the sensory area in the brain is devoted to the snout and tongue, and the part devoted to smell is relatively high compared to other animals.[61]

The Short-beaked Echidna has the largest prefrontal cortex relative to body size of any mammal,[58] taking up 50% of the cerebral cortex in comparison to 29% for humans.[62] This part of the brain in humans is though to be used for planning and analytical behaviour, leading to debate as to whether the Echidna has reasoning and strategising ability.[62][63] Experiments in a simple maze and with a test on whether the animal can open a trapdoor to access food, and the Echidna's ability to remember what it has learnt about the task for over a month has led scientists to conclude that its learning ability is similar to that of a cat or a rat.[64]

The Echidna shows rapid eye movement during sleep, usually around its thermoneutral temperature of 25, and this effect is suppressed at othe temperatures.[40] Its brain has been shown to contain a claustrum similar to that of placental mammals, so linking this structure to their common ancestor.[58][65]

Ecology and behaviour

A Short-beaked Echidna in French Island National Park building a defensive burrow (video 0:43s)

No systematic study of the ecology of the Short-beaked Echidna has been published; however, there have been studies of several aspects of their ecological behaviour. Short-beaked Echidnas live alone and, apart from the burrow created for rearing young, they have no fixed shelter or nest site. They do not have a home territory that they defend against other Echidnas, but range over a wide area.[30] The area that they move about in has been observed to be between 21 and 93 ha, although one study in Kangaroo island found that the animals there covered an area between 9 and 192 ha.[30] Overall, the mean range area across the various regions of Australia were 40–60 ha. There were no correlations between gender and range area, but a weak one with size.[30] Echidnas can share home ranges without incident, and sometimes share shelter sites if there are not enough for or each animal to have one individually.[66]

Short-beaked Echidnas are typically active in the daytime; however, they are ill-equipped to deal with heat, because they have no sweat glands and do not pant. Therefore, in warm weather they change their pattern of activity, becoming crepuscular or nocturnal.[67] Body temperatures above 34 °C (93 °F) are believed to be fatal, and in addition to avoiding the heat, the animal adjusts its circulation to maintain a sustainable temperature by moving blood to and from the skin to increase or lower heat loss.[67] In areas where water is present they can also swim to keep their body temperatures low.[67] The "thermoneutral zone" for the environment is around 25 °C (77 °F) at which point metabolism needed to maintain body temperature is minimised.[67] They can tolerate cold temperatures, and hibernate during the winter in very cold regions, but also in more temperate climate.[68] While the Echidna is an endothermic animal that can maintain body temperatures of around 32[69]—although they have a range of about 6 °C (43 °F) during the active season[70]—above that of the environment, they can reduce their metabolism and heart rate and their body temperature.[71] In addition to brief and light bouts of torpor throughout the year, the Echidna enters deeper periods during winter and hibernates.[69] During periods of hibernation, the body temperature drops to 10 °C (50 °F) or lower, down to even 4 °C (39 °F). The heart rate falls to 4–7 beats per minute—down from 50–68 at rest[33]—and the Echidna can breathe as infrequently as once every three minutes,[69] 15–18 times lower than when it is active.[33] Metabolism can drop to one eighth of the normal rate.[72] Echidnas begin to prepare for the hibernation phase of the year between Frebruary and April, when they reduce their consumption and make brief torpors. Males begin hibernating first while females that have reproduced start later.[72] During the period of hibernation, the animals average 13 separate bouts of torpor, which are broken up by arousals lasting 1.2 days on average. These interruptions to the hibernation tend to coincide with warmer periods.[72] Males begin to end the hibernation period in mid June, while reproductive females return to full activity in July and August, while non-reporductive females and immature Echidnas may not leave hibernation until two months later.[72] During euthermia, the body temperature can vary by 4 °C (39 °F) per day.[72] The metabolism rate of the Echidna is around 30% of that of placental mammals, making it the lowest energy consuming mammal. This figure is similar to that of animals that eat ants and termites;[73] burrowing animals also tend to have low metabolism generally.[67]

As Echidnas begin their hibernation period while the weather is still warm, and as food is generally always plentiful, questions have arisen as to why they hibernate, as it is seemingly unecessary for survival.[74] Conjectures posited include that the Echidnas want to be cautious with their energy reserves or maximise their foraging strategy. Another is that Echidnas were descended from ectothermic ancestors but have taken to periodic endothermy for reproductive reasons, so that the young can develop more quickly.[74] Supporters of this theory point to the fact that males hibernate earlier than females as they finish their contribution to reproduction first, and that they awake earlier to undero spermatogenosis in preparation for mating, while females and young lag in their annual cycle.[74] During the hibernation period, the animals stay in entirely covered shelter.[75]

Short-beaked Echidnas can live anywhere that has a good supply of food. They locate food by smell, using sensors in the tip of their snout, and regularly feast on ants and termites.[76] This view is based of its method of shuffling around from side to side somewhat arbitrarily and using its snout in an apparently probing manner.[77] A study of Echidnas in New England has shown that they tend to dig up scarab beetle larvae in spring when the prey is active, but eschew this prey when it is inactive; this has been used to support the conjecture that Echidnas detect their prey using their hearing.[78] Vision is not believed to be significant in hunting, as blind animals have been observed to survive in the wild.[78]

The Echidnas use their strong claws to pull apart nests and rotting logs to gain access to their prey.[79] They are selective of what types of ants and termites they target because some of their would-be prey secrete repulsive liquids, and they have a preference for the eggs, pupae and winged phases of the insects.[80] The Echidnas hunt most vigorously towards the end of winter and early in spring, when their fat reserves have been depleted after hibernation, or for females who need more reserves for their young.[81] At this time of the year, ants have high body fat, and the Echidna targets their mounds.[81] The animals also hunts beetles and earthworms, providing they are small enough to fit in a 5 mm gap.[81] The proportion of ants and termites in the diet depends to the availability of the prey, and the termites make up a larger part of the diet in drier areas where they are more plentiful.[77] However, termites are preferred if available as a smaller proportion of their bodies are indigestible exoskeletons. However, termites from the Rhinotermitidae family are avoided due to their chemical defences. Scarab beetle larvae are also a large part of the diet when and where available. In a study conducted in New England in New South Wales, 37% of the food intake consisted of the beetle larvae, although the Echidna had to squash the prey in its snout as it ingested it, due to size.[77]

They are powerful diggers, using their clawed front paws to dig out prey and create burrows for shelter. They may rapidly dig themselves into the ground if they cannot find cover when in danger.[22] They bend their belly together to shield the soft unprotected part, and can also urinate, giving off a pungent liquid, in an attempt to deter attackers.[82] Male Echidnas also have a small spur on their rear legs that was believed to a defensive weapon that has since been lost to the evolutionary process.[83] Echidnas typically try to avoid confrontation with predators due to its lack of anatomical weaponry, using the colour of its spines, which are similar to the vegetation the dry Australian environment to avoid detection. They have a keen ear and tend to become stationary if sound is detected.[83]

In Australia they are most common in forested areas where there are abundant termite-filled fallen logs. In agricultural areas, they are most likely to be found in uncleared scrub; they may be found in grassland, arid areas, and in the outer suburbs of the capital cities. Little is known about their distribution in New Guinea; they have been found in southern New Guinea between Merauke in the west and the Kelp Welsh River, east of Port Moresby, in the east, where they may be found in open woodland.[3]

Echidnas have the ability to swim, and have been seen cooling off in dams during high temperatures. They have also been seen crossing streams and also swimming for brief periods in seas off Kangaroo Island. They swim with their snouts vertical, using it as a snorkel.[83]

Reproduction

The underside of a female Short-beaked Echidna; the pouch which carries eggs is towards the rear of the abdomen.

The solitary Short-beaked Echidna looks for a mate between May and September;[22] the precise timing of the mating season varies with geographic location.[84] In the months before the mating season, the size of the male's testes increases by a factor of three or more before spermatogenesis occurs.[85] Both males and females give off a strong musky odour during the mating season, by turning their cloacas inside out and wiping them on the ground, secreting a glossly liquid believed to be an aphrodisiac.[37] During courtship—observed for the first time in 1989—males locate and pursue females. Trains of up to ten males—often with the youngest and smallest male at the end of the queue[86]—may follow a single female in a courtship ritual that may last for up to four weeks; the duration of the courtship period varies with location.[17][87] During this time, they forage for food together, and the train often changes composition as some males leave and other join the pursuit.[86] In cooler parts of their range, such as Tasmania, females may mate within a few hours of arousal from hibernation.[88]

Before mating, the male smells the female, paying particular attention to the cloaca. This process can take a few hours and the female can reject the suitor by rolling herself into a ball.[85] After prodding and sniffing her back,[85] the male is often observed to roll the female onto her side and then assume a similar position himself so that the two animals are abdomen to abdomen, having dug a small crater to lie in. They can lie with heads facing one another, or head to rear.[89] If more than one male is in the vicinity there may be fighting over the female.[89] Each side of the bilaterally symmetrical, rosette-like, four-headed penis [similar to that of reptiles and 7 centimetres (2.8 in) in length] is used alternately, with the other half being shut down between ejaculations. Sperm bundles of around 100 each appear to confer increased sperm motility, which may provide the potential for sperm competition between males.[89][90] This process takes between half an hour and three.[89] Each mating results in the production of a single egg, and females are known to mate only once during the breeding season; each mating is successful.[91]

Fertilisation occurs in the oviduct. Gestation takes between 21 and 28 days after copulation,[92] during which time the female constructs a nursery burrow. Following the gestation period, a single rubbery-skinned egg[17] between 13 and 17 millimetres (0.5 and 0.7 in) in diameter and 1.5 and 2.0 grams (0.053 and 0.071 oz) in weight[92] is laid from her cloaca directly into a small, backward-facing pouch that has developed on her abdomen. The egg is ovoid, leathery, soft and cream-coloured. Between laying and hatching, some females continue to forage for food while others dig a burrow and rest there until hatching.[92] Ten days after it is laid, the egg hatches within the pouch.[22][92] The embryo develops an "egg tooth" during incubation, which it uses to tear open the egg; the tooth disappears soon after hatching.[93]

Hatchlings are about 1.5 centimetres (0.6 in) long and weigh between 0.3 and 0.4 grams (0.011 and 0.014 oz).[94][93] After hatching, young Echidnas are known as puggles. Although newborns are still semitranslucent and still surrounded by the remains of the egg yolk, and the eyes are still barely developed, they already have well-defined front limbs and digits that allow it to climb on its mother's body.[93] Hatchlings attach themselves to their mothers' milk areolae, specialised patches on the skin that secrete milk—monotremes lack nipples—through approximately 100–150 pores.[17][22][93] The puggles were thought to have imbibed the milk by licking the mother's skin, but this has been superseded by a belief that it feeds by sucking the areola.[95]

They have been observed ingesting large amounts during each feeding period, and mothers may leave them unattended in the burrow for between five and ten days in order to find food.[95] Studies of captive Echidnas have shown that they can ingest milk once every two or three days and then increase their mass by 20% in one milk-drinking session lasting between one and two hours.[95] Around 40% of the milk weight is converted into body mass, and as such a high proportion of milk is converted into growth, a correlation with the growth of the puggle and its mother's size has been observed.[95] By the time the puggle is around 200 grams (7.1 oz) it is left in the burrow while the mother forages for food, and it reaches around 400 grams (14 oz) after around two months.[95] Juveniles are eventually ejected from the pouch at around two to three months of age, because of the continuing growth in the length of their spines.[22][95] During this period, the young are left in a covered burrow while the mother forages, and the young are often predated.[96] Suckling gradually decreases until juveniles are weaned at about six months of age. The duration of lactation is about 200 days,[17][95] and the young leave the burrow after 180 to 205 days, usually in January or February, at which time they are around 800 and 1,300 grams (28 and 46 oz). There is no contact between the mother and young after this point.[96]

The composition of the milk secreted by the mother changes over time. At the moment of birth, the solution is dilute and contains 1.25% fat, 7.85% protein, and 2.85% carbohydrates and minerals. Mature milk has much more concentrated nutrients, with 31, 12.4 and 2.8% of the aforementioned quantities respectively.[95] Near weaning, the protein level continues to increase this is conjecture to be due to the need for keratin synthesis for hair and spines, to provide defences against the cold weather and predators.[97]

The principal carbohydrate components of the milk are fucosyllactose and saialyllactose; it has a high iron content, which gives it a pink colour.[98] The high iron content and low levels of free lactose contrasts with other eutherian mammals. LActose production is believed to proceed along the same lines as in the platypus.[98]

The age of sexual maturity is uncertain, but may be four to five years. A twelve-year field study, published in 2003, found that the Short-beaked Echidna reaches sexual maturity between five and twelve years of age, and that the frequency of reproduction varies from once every two years to once every six years.[94] The Short-beaked Echidna can live as long as 45 years in the wild,[99] and the longest-lived echidna in captivity reached 49 years of age in a zoo in Philadelphia in the US.[82] Echidnas contrast to other mammals in that their rates of reproduction and metabolism are lower, and they live longer, as though in slow motion,[82] something caused at least in part by their low body temperature, which rarely exceeds 33o even when they are not hibernating.[82]

Like its fellow monotreme the Platypus, the Short-beaked Echidna has a system of multiple sex chromosomes, in which males have four Y chromosomes and five X chromosomes. Male individuals appear to be X1Y1X2Y2X3Y3X4Y4X5 (figure[100]), while females are X1X1X2X2X3X3X4X4X5X5. Weak identity between chromosomes results in meiotic pairing that yields only two possible genotypes of sperm, X1X2X3X4X5 or Y1Y2Y3Y4, thus preserving this complex system.[100]

Conservation status

A Short-beaked Echidna on the move

The Short-beaked Echidna is common throughout most of temperate Australia and lowland New Guinea, and is not listed as endangered.[17][22] In Australia, the Echidna remains widespread across a wide range of conditions, including urban outskirts, coastal forests and dry inland areas. They are especially widespread in Tasmania and on Kangaroo Island.[101]

The most common threats to the animal in Australia are motor vehicles and habitat destruction, which have led to localized extinctions.[101] In Australia, the number of Short-beaked Echidnas has been less affected by land clearance than have some other species, since Short-beaked Echidnas do not require a specialized habitat beyond a good supply of ants and termites.[22] As a result, they can survive in cleared land if the cut-down wood is left in the area, as the logs can be used as shelter and a source of insects. However, areas where the land has been completely cleared for single crops that can be mechanically harvested, such as wheatfields, have seen extinctions.[101] Over a decade-long period, around one third of Echidna deaths reported to wildlife authorities in Victoria were due to motor vehicles, and the majority of wounded animals handed in were traffic accident victims.[102] Studies have shown that Echidnas often choose to traverse drainage culverts under roads, so this is seen as a viable means of reducing deaths on busy roads in rural areas or national parks where the animals are more common.[102]

Despite their spines, they are preyed on by birds, the Tasmanian Devil,[22] dingoes,[17] snakes, lizards, goannas, cats and foxes,[103] although almost all victims are young. Goannas are known for their digging abilities and strong sense of smell and are believed to be have been the main predators of the Echidna before the introduction of most of the other predators by European settlers.[103] Dingoes are known to kill Echidnas by rolling them over onto their backs and attacking their underbellies.[101] A tracking study of a small number of Echidnas on Kangaroo Island concluded that goannas and cats were the main predators, although it has been speculated that foxes—absent in Kangaroo Island—would also be a major threat as the Echidna density in Tasmania—which is free from foxes—is higher in other parts of Australia.[103]

They were eaten by indigenous Australians and the early European settlers of Australia.[22] In contrast, hunting and eating of the Echidna in New Guinea has increased over time and caused a decline in the population and distribution areas; it is now believed to have disappeared from highland areas. The killing of Echidnas were a taboo in traditional culture, but since the tribespeople have become increasingly Christianised by western missionaries, hunting has increased, and the animals have been more easily tracked down due to the use of dogs.[104]

Infection with the introduced parasite Spirometra erinaceieuropaei is considered fatal for the Echidna. This is a waterborne infection contracted through sharing drinking areas with infected dogs, foxes, cats and dingos, which do not die from the parasite. The infection is seen as being more dangerous in drier areas where more animals are sharing less bodies of water, increasing the chance of transmission.[102] The Wildlife Preservation Society of Queensland runs an Australia-wide survey called Echidna Watch to monitor the species in Australia. Echidnas are also known to be affected by tapeworms, protozoal and herpes-like viral infections, but there is little knowledge of how it affects the health of the animals or the populations.[105]

Although it considered easy to keep Echidnas healthy in captivity,[106] breeding is difficult, partly due to the relatively infrequent cycle. In 2009, Perth Zoo managed to breed some captive Short-beaked Echidnas.[107] Up until 2006, only five zoos have managed to breed a captive Short-beaked Echidna, but no captive-bred young have survived to maturity.[108] Of these five institutions, only one in Australia—Sydney's Taronga Zoo—managed to breed echidnas, in 1977. The other four cases occurred in the northern hemisphere, two in the United States and the others in western Europe. In these cases, breeding occurred six months out of phase compared to Australia after the animals had adapted to northern hemisphere seasons.[108] The failure of captive breeding programs has conservation implications for the endangered species of echidna from the genus Zaglossus, and to a lesser extent for the Short-beaked Echidna.[108]

Cultural references

Short-beaked Echidnas feature in the animistic culture of indigenous Australians, including their visual arts and stories. The species was a totem for some groups, including the Noongar people from Western Australia. Many groups have myths about the animal; one myth explains that it was created when a group of hungry young men went hunting at night and stumbled across a wombat. They threw spears at the wombat, but lost sight of it in the darkness. The wombat adapted the spears for its own defence and turned into an Echidna.[109] Another story tells of a greedy man who kept food from his tribe; warriors speared him and he crawled away into the bushes, where he turned into an Echidna, the spears becoming his spines.

The Short-beaked Echidna is an iconic animal in contemporary Australia, notably appearing on the Australian five-cent piece (the smallest denomination),[110] and on a $200 commemorative coin released in 1992.[111] The Short-beaked Echidna has been included in several postal issues: it was one of four native species to appear on Australian postage stamps in 1974, when it was on the 25-cent stamp; it appeared on a 37-cent stamp in 1987, and in 1992 it was on the 35-cent stamp.[112][citation needed] The anthropomorphic echidna Millie was a mascot for the 2000 Summer Olympics.[113]

See also

References

Cited references

  1. ^ Groves, C.P. (2005). "Order Monotremata". In Wilson, D.E.; Reeder, D.M (eds.). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. p. 1. ISBN 978-0-8018-8221-0. OCLC 62265494.
  2. ^ Template:IUCN2008 Database entry includes justification for why this species is of least concern
  3. ^ a b c Flannery, T. 1990. Mammals of New Guinea Robert Brown & Associates ISBN 1-86273-029-6
  4. ^ a b c d Augee, Gooden and Musser, p. 5.
  5. ^ Iredale, T. and Troughton, E. 1934. A checklist of mammals recorded from Australia. Memoirs of the Australian Museum 6: i–xii, 1–122
  6. ^ http://animaldiversity.ummz.umich.edu/site/accounts/classification/Tachyglossus.html
  7. ^ Augee, Gooden and Musser, pp. 5–9.
  8. ^ http://animaldiversity.ummz.umich.edu/site/accounts/classification/Zaglossus.html
  9. ^ Augee, Gooden and Musser, pp. 7–10.
  10. ^ a b c d Augee, Gooden and Musser, p. 10.
  11. ^ a b c Augee, Gooden and Musser, pp. 6–7.
  12. ^ Griffiths, M.E. 1978. The Biology of Monotremes. Academic Press : New York ISBN 0-12-303850-2
  13. ^ Augee, Gooden and Musser, p. 16.
  14. ^ Augee, Gooden and Musser, pp. 16–17.
  15. ^ Cliff Goddard (1992). Pitjantjatjara/Yankunytjatjara To English Dictionary (2 ed.). Alice Springs, Northern Territory: Institute for Aboriginal Development. p. 152. ISBN 0-949659-64-9.
  16. ^ Philip Hamilton (1997). "short-beaked echidna, Tachyglossus aculeatus". Australian Institute of Aboriginal and Torres Strait Islander Studies. Retrieved 8 June 2007.
  17. ^ a b c d e f g h i Egerton, p. 38.
  18. ^ Augee, Gooden and Musser, p. 6.
  19. ^ a b c d Augee, Gooden and Musser, p. 2.
  20. ^ a b Augee, Gooden and Musser, p. 55.
  21. ^ a b Murray, P.F. 1981. A unique jaw mechanism in the echidna, Tachglossus aculeatus (Monotremata). Australian Journal of Zoology 29: 1–5
  22. ^ a b c d e f g h i j k l m "DPIW - Short-beaked Echidna". Dpiw.tas.gov.au. 10 August 2009. Retrieved 29 May 2010.
  23. ^ Augee, Gooden and Musser, p. 35.
  24. ^ Augee, Gooden and Musser, p. 100.
  25. ^ Augee, Gooden and Musser, pp. 100–101.
  26. ^ Augee, Gooden and Musser, pp. 101–102.
  27. ^ Augee, Gooden and Musser, p. 102.
  28. ^ Dawson, T.J., Grant, T.R. and Fanning, D. 1979. Standard metabolism of monotremes and the evolution of homeothermy. Australian Journal of Zoology 27:511–515
  29. ^ Augee, Gooden and Musser, pp. 90–91.
  30. ^ a b c d Augee, Gooden and Musser, p. 91.
  31. ^ Augee, Gooden and Musser, pp. 114–115.
  32. ^ a b Augee, Gooden and Musser, pp. 115.
  33. ^ a b c d e Augee, Gooden and Musser, p. 116.
  34. ^ a b "Science & Nature - Wildfacts - Short-beaked echidna, common echidna, spiny anteater". BBC. 25 July 2008. Retrieved 29 May 2010.
  35. ^ Augee, Gooden and Musser, pp. 114–115.
  36. ^ Augee, Gooden and Musser, p. 3.
  37. ^ a b Augee, Gooden and Musser, p. 79.
  38. ^ Augee, Gooden and Musser, p. 4.
  39. ^ Hassiotis, M., Paxinos, G., and Ashwell, K.W.S. 2004. Anatomy of the central nervous system of the Australian echidna. Proceedings of the Linnean Society of New South Wales 125:287–300
  40. ^ a b c Augee, Gooden and Musser, p. 53.
  41. ^ Augee, Gooden and Musser, pp. 103–104.
  42. ^ a b c Augee, Gooden and Musser, p. 105.
  43. ^ Doran, G.A. and Baggett, H. 1970. The vascular stiffening mechanism in the tongue of the echidna (Tachyglossus aculeatus). Anatomical Record 167: 197–204
  44. ^ Augee, Gooden and Musser, p. 104.
  45. ^ a b c d Augee, Gooden and Musser, p. 106.
  46. ^ Augee, Gooden and Musser, p. 56.
  47. ^ a b Augee, Gooden and Musser, p. 57.
  48. ^ Augee, Gooden and Musser, pp. 58–59.
  49. ^ a b Iggo, A., McIntyre, A.K. & Proske, U. (1985). Responses of mechanoreceptors and thermoreceptors in skin of the snout of the echidna Tachyglossus aculeatus. Proceedings of the Royal Society of London B 223: 261–277
  50. ^ Augee, Gooden and Musser, p. 58.
  51. ^ Augee, Gooden and Musser, p. 65.
  52. ^ Augee, Gooden and Musser, p. 66.
  53. ^ Augee, Gooden and Musser, p. 68.
  54. ^ Augee, Gooden and Musser, pp. 69–70.
  55. ^ Augee, Gooden and Musser, pp. 70–71.
  56. ^ Augee, Gooden and Musser, pp. 72–75.
  57. ^ Burke, D. 2002. Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus). Animal Cognition 5:79–84
  58. ^ a b c Nicol, S.C., et al. 2000. The echidna manifests typical characteristics of rapid eye movement sleep. Neuroscience Letters 283:49–52
  59. ^ Augee, Gooden and Musser, pp. 44–48.
  60. ^ Augee, Gooden and Musser, p. 45.
  61. ^ a b c Augee, Gooden and Musser, p. 47.
  62. ^ a b Augee, Gooden and Musser, p. 48.
  63. ^ Augee, Gooden and Musser, pp. 48–50.
  64. ^ Augee, Gooden and Musser, pp. 50–51.
  65. ^ Ashwell, K.W.S., Hardman, C.D., and Paxinos, G. 2004. The claustrum is not missing from all monotreme brains. Brain Behaviour and Evolution 64:223–241 PMID 15319553
  66. ^ Augee, Gooden and Musser, pp. 91–92.
  67. ^ a b c d e Augee, Gooden and Musser, p. 114.
  68. ^ Grigg, G.C., Beard, L.A., and Augee, M.L. 1989. Hibernation in a monotreme, the echidna (Tachyglossus aculeatus). Comparative Biochemistry and Physiology. A, Comparative Physiology 92:609–612 PMID 2566425
  69. ^ a b c Augee, Gooden and Musser, p. 108.
  70. ^ Augee, Gooden and Musser, p. 112.
  71. ^ Augee, Gooden and Musser, p. 107.
  72. ^ a b c d e Augee, Gooden and Musser, p. 109.
  73. ^ Augee, Gooden and Musser, p. 113.
  74. ^ a b c Augee, Gooden and Musser, p. 110.
  75. ^ Augee, Gooden and Musser, p. 111.
  76. ^ "Short-beaked Echidna - Zoo Aquarium Association". Arazpa.org.au. Retrieved 29 May 2010.
  77. ^ a b c Augee, Gooden and Musser, p. 98.
  78. ^ a b Augee, Gooden and Musser, p. 99.
  79. ^ Augee, Gooden and Musser, p. 95.
  80. ^ Augee, Gooden and Musser, pp. 96–97.
  81. ^ a b c Augee, Gooden and Musser, p. 97.
  82. ^ a b c d Augee, Gooden and Musser, p. 93.
  83. ^ a b c Augee, Gooden and Musser, p. 92.
  84. ^ Augee, Gooden and Musser, p. 77.
  85. ^ a b c Augee, Gooden and Musser, p. 80.
  86. ^ a b Augee, Gooden and Musser, p. 78.
  87. ^ Rismiller, P.D., Seymour, R.S., 1991. The echidna. Scientific American 264, 96–103.
  88. ^ Nicol, S.C., Andersen, N.A., and Jones, S.M., 2005. Seasonal variations in reproductive hormones of free-ranging echidnas (Tachyglossus aculeatus): interaction between reproduction and hibernation. General and Comparative Endocrinology 144: 204–210
  89. ^ a b c d Augee, Gooden and Musser, p. 81.
  90. ^ Johnston S.D., Smith B., Pyne M., Stenzel D., and Holt W.V. One-Sided Ejaculation of Echidna Sperm Bundles (Tachyglossus aculeatus). Am. Nat. 2007. Vol. 170, p. E000. [AN:42629 DOI:10.1086/522847]
  91. ^ Rismiller, P.D. and McKelvey, M.W. 2000. Frequency of breeding recruitment in the Short-beaked Echidna, Tachyglossus aculeatus. Journal of Mammalogy 81:1–17
  92. ^ a b c d Augee, Gooden and Musser, p. 84.
  93. ^ a b c d Augee, Gooden and Musser, p. 85.
  94. ^ a b Rismiller, P.D. and McKelvey, M.W. 2003. Body mass, age and sexual maturity in short-beaked echidnas, Tachyglossus aculeatus. Comparative Biochemistry and Physiology. A, Molecular & Integrative Physiology 136:851–865
  95. ^ a b c d e f g h Augee, Gooden and Musser, p. 86.
  96. ^ a b Augee, Gooden and Musser, p. 88.
  97. ^ Augee, Gooden and Musser, pp. 86–87.
  98. ^ a b Augee, Gooden and Musser, p. 87.
  99. ^ "Parks Victoria Fact File". Parkweb.vic.gov.au. Retrieved 29 May 2010.
  100. ^ a b Rens, W.; et al. (2007). "The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z". Genome Biology. 8 (11): R243. doi:10.1186/gb-2007-8-11-r243. PMC 2258203. PMID 18021405. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: unflagged free DOI (link)
  101. ^ a b c d Augee, Gooden and Musser, p. 120.
  102. ^ a b c Augee, Gooden and Musser, p. 121.
  103. ^ a b c Augee, Gooden and Musser, pp. 120–121.
  104. ^ Augee, Gooden and Musser, p. 119.
  105. ^ Augee, Gooden and Musser, p. 122.
  106. ^ Augee, Gooden and Musser, pp. 122–125.
  107. ^ "Baby echidnas make first appearance at Perth Zoo". Perthnow.com.au. 4 November 2009. Retrieved 29 May 2010.
  108. ^ a b c Augee, Gooden and Musser, p. 126.
  109. ^ Robinson, R. 1966. Aboriginal Myths and Legends. Sun Books, Melbourne
  110. ^ "Five cents". Ramint.gov.au. 14 February 1966. Retrieved 29 May 2010.
  111. ^ http://heavymetalholdings.com.au/index_files/RAMGoldCoins.htm
  112. ^ Australia Post. "Australian Wildlife (1992)". Retrieved 8 May 2010.
  113. ^ Rohrer, Finlo (16 June 2008). "How not to have an Olympic mascot nightmare". BBC News. Retrieved 29 May 2010.

General references

  • Augee, M. L. and Gooden, B. A. 1993. Echidnas of Australia and New Guinea. Australian National History Press, Sydney ISBN 978-0-86840-046-4
  • Augee, M. L., Gooden, B. A. and Musser, A. 2006. Echidna : extraordinary egg-laying mammal. Collingwood, Victoria, CSIRO Publishing ISBN: 0643092048
  • Augee, M. L. 1983. R. Strahan Ed. The Australian Museum Complete Book of Australian Mammals. pp. 8–9. Angus & Robertson ISBN 0-207-14454-0
  • Egerton, L. ed. 2005. Encyclopedia of Australian wildlife. Reader's Digest ISBN 1-876689-34-X
  • Griffiths, M. 1989. Tachyglossidae. pp. 407–435 in Fauna of Australia (D. W. Walton and B. J. Richardson, eds.). Mammalia, Canberra, Australian Capital Territory 1B:1–1227.

External links

Listen to this article
(2 parts, 18 minutes)
Spoken Wikipedia icon
These audio files were created from a revision of this article dated
Error: no date provided
, and do not reflect subsequent edits.

Template:Link GA Template:Link FA Template:Link FA