2024 in paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 842: Line 842:
===Paleoclimate===
===Paleoclimate===
* A multibillion-year history of seawater δ<sup>18</sup>O, temperature, and marine and terrestrial clay abundance is reconstructed by Isson & Rauzi (2024), who report evidence interpreted as indicative of temperate Proterozoic climate, and evidence indicating that declines in clay [[authigenesis]] coincided with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants.<ref>{{Cite journal |last1=Isson |first1=T. |last2=Rauzi |first2=S. |title=Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history |year=2024 |journal=Science |volume=383 |issue=6683 |pages=666–670 |doi=10.1126/science.adg1366 |pmid=38330122 }}</ref>
* A multibillion-year history of seawater δ<sup>18</sup>O, temperature, and marine and terrestrial clay abundance is reconstructed by Isson & Rauzi (2024), who report evidence interpreted as indicative of temperate Proterozoic climate, and evidence indicating that declines in clay [[authigenesis]] coincided with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants.<ref>{{Cite journal |last1=Isson |first1=T. |last2=Rauzi |first2=S. |title=Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history |year=2024 |journal=Science |volume=383 |issue=6683 |pages=666–670 |doi=10.1126/science.adg1366 |pmid=38330122 }}</ref>
* Clark ''et al.'' (2024) present a new reconstruction of global temperature changes over the past 4.5 million years, interpreted as consistent with changes in the carbon cycle.<ref>{{Cite journal |last1=Clark |first1=P. U. |last2=Shakun |first2=J. D. |last3=Rosenthal |first3=Y. |last4=Bartlein |first4=P. J. |title=Global and regional temperature change over the past 4.5 million years |year=2024 |journal=Science |volume=383 |issue=6685 |pages=884–890 |doi=10.1126/science.adi1908 }}</ref>
* A study on the geochemistry of Jurassic deposits of the External Rif Chain ([[Morocco]]), providing evidence of climate changes in northwest [[Gondwana]] during the Jurassic period (from cool climate with low rainfall and productivity during the Early Jurassic, to moister, warmer climate during the Middle and Late Jurassic, subsequently returning to arid and cool climate during the Late Jurassic), is published by Kairouani ''et al.'' (2024).<ref>{{Cite journal |last1=Kairouani |first1=H. |last2=Abbassi |first2=A. |last3=Zaghloul |first3=M. N. |last4=El Mourabet |first4=M. |last5=Micheletti |first5=F. |last6=Fornelli |first6=A. |last7=Mongelli |first7=G. |last8=Critelli |first8=S. |title=The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution |year=2024 |journal=Marine and Petroleum Geology |at=106762 |doi=10.1016/j.marpetgeo.2024.106762 }}</ref>
* Clark ''et al.'' (2024) present a new reconstruction of global temperature changes over the past 4.5 million years, interpreted as consistent with changes in the carbon cycle.<ref>{{Cite journal |last1=Clark |first1=P. U. |last2=Shakun |first2=J. D. |last3=Rosenthal |first3=Y. |last4=Bartlein |first4=P. J. |title=Global and regional temperature change over the past 4.5 million years |year=2024 |journal=Science |volume=383 |issue=6685 |pages=884–890 |doi=10.1126/science.adi1908 |pmid=38386742 }}</ref>


==References==
==References==

Revision as of 09:47, 24 February 2024

List of years in paleontology (table)
In paleobotany
2021
2022
2023
2024
2025
2026
2027
In arthropod paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoentomology
2021
2022
2023
2024
2025
2026
2027
In paleomalacology
2021
2022
2023
2024
2025
2026
2027
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In archosaur paleontology
2021
2022
2023
2024
2025
2026
2027
In paleomammalogy
2021
2022
2023
2024
2025
2026
2027
In paleoichthyology
2021
2022
2023
2024
2025
2026
2027

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2024.

Flora

Plants

"Algae"

Phycological research

  • Evidence from genomic data, interpreted as indicating that the brown algae originated during the Ordovician but their major diversification happened during the Mesozoic, is presented by Choi et al. (2024).[2]
  • Kiel et al. (2024) report the discovery of kelp holdfasts from the Oligocene strata in Washington State (United States), providing evidence of the presence of kelp in the northeastern Pacific Ocean since the earliest Oligocene.[3]

Fungi

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Meliolinites miopanici[4]

Sp. nov

Valid

Kundu & Khan

Miocene

 India

A member of the family Meliolaceae. Announced in 2023; the final version of the article naming it was published in 2024.

Mycological research

  • Garcia Cabrera & Krings (2024) describe fungi colonizing bulbils of Palaeonitella cranii from the Devonian Rhynie chert, interpreted as distinct from fungi colonizing the axes and branchlets of P. cranii, which might indicate organ-specific colonization.[5]

Cnidarians

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Bothrophyllum crassiseptatum[6]

Sp. nov

Luo et al.

Carboniferous

Shiqiantan Formation

 China

A rugose coral belonging to the group Stauriida and the family Bothrophyllidae.

Bothrophyllum junggarense[6]

Sp. nov

Luo et al.

Carboniferous

Shiqiantan Formation

 China

A rugose coral belonging to the group Stauriida and the family Bothrophyllidae.

Caninophyllum pseudotimaniforme[6]

Sp. nov

Luo et al.

Carboniferous

Shiqiantan Formation

 China

A rugose coral belonging to the group Stauriida and the family Cyathopsidae.

Arthropods

Brachiopods

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Borealoides[7]

Gen. et sp. nov

Valid

Jin et al.

Silurian (Rhuddanian)

Odins Fjord Formation

 Greenland

A member of Pentamerida belonging to the superfamily Pentameroidea and the family Virgianidae. The type species is B. balderi.

Chenshichonetes[8]

Nom. nov

Valid

Gaudin

Carboniferous

 Australia
 China

A member of the family Rugosochonetidae; a replacement name for Robertsella Chen & Shi (2003).

Deloprosopus dawesi[7]

Sp. nov

Valid

Jin et al.

Ordovician (Katian)

Merqujoq Formation

 Greenland

A member of Pentamerida belonging to the family Virgianidae.

Kulumbella heimdali[7]

Sp. nov

Valid

Jin et al.

Silurian (Aeronian)

Odins Fjord Formation

 Greenland

A member of Pentamerida belonging to the superfamily Stricklandioidea and the family Kulumbellidae.

Virgiana hursti[7]

Sp. nov

Valid

Jin et al.

Silurian (Rhuddanian)

Turesø Formation

 Greenland

A member of Pentamerida belonging to the family Virgianidae.

Molluscs

Echinoderms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Copernicrinus[9]

Gen. et sp. nov

Płachno et al.

Middle Jurassic (Bajocian)

Kérdacha Formation

 Algeria

A crinoid belonging to the group Comatulida and the family Thiolliericrinidae. The type species is C. zamori.

Micraster ernsti[10]

Sp. nov

Valid

Schlüter

Late Cretaceous (Campanian)

 Germany

Research

  • A review of the early evolution of echinoderms is published by Rahman and Zamora (2024). [11]
  • Evidence of increase of diversity of adaptations to different life habits through out the evolutionary history of Cambrian and Ordovician echinoderms is presented by Novack-Gottshall et al. (2024).[12]
  • Bohatý et al. (2024) describe new fossil material of Monstrocrinus from the Devonian strata in Germany, and reinterpret Monstrocrinus as an attached, stalked echinoderm.[13]

Conodonts

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Neogondolella excentrica primitiva[14]

Ssp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Neogondolella excentrica sigmoidalis[14]

Ssp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Neogondolella quasiconstricta[14]

Sp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Neogondolella quasicornuta[14]

Sp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Research

Fish

Amphibians

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bromerpeton[17]

Gen. et sp. nov

MacDougall et al.

Early Permian

Tambach Formation

 Germany

A recumbirostran belonging to the family Brachystelechidae. The type species is B. subcolossus.

Kwatisuchus[18] Gen. et sp. nov Pinheiro et al. Early Triassic Sanga do Cabral Formation  Brazil A benthosuchid temnospondyl. The type species is K. rosai.

Stenokranio[19]

Gen. et sp. nov

Valid

Werneburg et al.

Carboniferous-Permian transition (Gzhelian/Asselian)

Remigiusberg Formation

 Germany

An eryopid temnospondyl. The type species is S. boldi.

Telmatobius achachila[20]

Sp. nov

Gómez et al.

Miocene

 Bolivia

A species of Telmatobius.

Ymboirana[21]

Gen. et sp. nov

Valid

Santos et al.

Oligocene

Tremembé Formation

 Brazil

A typhlonectid caecilian. The type species is Y. acrux.

Research

  • Porro, Martin-Silverstone & Rayfield (2024) redescribe the anatomy of the skull of Eoherpeton watsoni and present a new, three-dimensional reconstruction of the skull.[22]
  • Redescription and a study on the affinities of Hyperokynodon keuperinus is published by Schoch (2024).[23]
  • A study on the affinities of Chinlestegophis jenkinsi is published by Marjanović et al. (2024), whose phylogenetic analysis doesn't support the interpretation of C. jenkinsi and stereospondyls in general as stem caecilians.[24]
  • Syromyatnikova et al. (2024) describe fossil material of a member of the genus Andrias from the Pliocene Belorechensk Formation (Krasnodar Krai, Russia), representing one of the geologically youngest and easternmost records of giant salamanders in Europe reported to date.[25]
  • A specimen of Gansubatrachus qilianensis preserved with eggs within its body, interpreted as a skeletally immature gravid female, is described from the Lower Cretaceous Zhonggou Formation (China) by Du et al. (2024).[26]
  • A diverse assemblage of amphibian fossils is described from the Miocene and Pliocene strata from the Hambach surface mine (Germany) by Villa, Macaluso & Mörs (2024), who interpret the studied fossils as indicative of a humid climate persisting in the area throughout the Neogene.[27]
  • Reisz, Maho & Modesto (2024) reevaluate the affinities of recumbirostrans and lysorophians, arguing that the studied tetrapods were not amniotes.[28]

Reptiles

Synapsids

Non-mammalian synapsids

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Docodon hercynicus[29]

Sp. nov

Valid

Martin et al.

Late Jurassic (Kimmeridgian)

Süntel Formation

 Germany

Ergetiis[30]

Gen. et sp. nov

Averianov et al.

Early Cretaceous

Batylykh Formation

 Russia
( Sakha Republic)

A tegotheriid docodont. The type species is E. ichchi.

Nyaphulia[31]

Gen. et comb. nov

Valid

Duhamel et al.

Permian (Guadalupian)

Abrahamskraal Formation

 South Africa

A basal dicynodont. New genus for "Eodicynodon" oelofseni, the type species.

Paratraversodon[32]

Gen. et sp. nov

Valid

Kerber et al.

Triassic

 Brazil

A traversodontid cynodont. The type species is P. franciscaensis.

Riojanodon[33]

Gen. et sp. nov

Valid

Martinelli et al.

Triassic

Chañares Formation

 Argentina

A chiniquodontid cynodont. The type species is R. nenoi.

Research

  • Singh et al. (2024) provide evidence of a dramatic shift in the jaw functional morphology of carnivorous synapsids across the early-middle Permian transition, and interpret their findings as indicative of changes of feeding ecologies of predatory synapsids related to increasingly dynamic behaviors and interactions in the studied time interval.[34]
  • Maho, Holmes & Reisz (2024) describe new fossil material of large-bodied synapsids from the Richards Spur locality (Oklahoma, United States), including fossil material of a sphenacodontid which might be distinct from known members of the group and the first ophiacodontid material from this locality; the authors use photography, stipple drawings and coquille drawings for visual representation of the studied material, and argue that three forms of visual representation provide more information about the specimens compared to only using photographs.[35]
  • Sidor & Mann (2024) describe an articulated sternum and interclavicle of a specimen of Aelurognathus tigriceps from the upper Madumabisa Mudstone Formation (Zambia), providing new information on the anatomy of the sternum in gorgonopsians.[36]
  • Benoit et al. (2024) reevaluate the provenance of three gorgonopsian specimens from purported Lower Triassic strata in the Karoo Basin (South Africa), and interpret the studied fossils as expanding the range of the genus Cyonosaurus higher up in the extinction zone, but don't confirm the survival of gorgonopsians past the Permian–Triassic extinction event.[37]
  • A study on dental complexity in gomphodont cynodonts through time, indicating that the peak in postcanine complexity was reached early in the gomphodont evolution, is published by Hendrickx et al. (2024).[38]
  • Kaiuca et al. (2024) provide new body mass estimates for multiple cynodont taxa, and report that rates of body size evolution were lower in prozostrodontians ancestral to the first Mammaliaformes than in other lineages.[39]

Mammals

Other animals

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Beretella[40]

Gen. et sp. nov

Han, Guo, Wang and Qiang in Wang et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A member of Saccorhytida. The type species is B. spinosa.

Conchicolites corbalengus[41]

Sp. nov

Vinn et al.

Ordovician (Hirnantian)

 Estonia

A member of Cornulitida.

Cornulites levigatus[41]

Sp. nov

Vinn et al.

Ordovician (Hirnantian)

 Estonia

A member of Cornulitida.

Cretacimermis dolor[42]

Sp. nov

Fang, Poinar & Luo in Fang et al.

Cretaceous

Burmese amber

 Myanmar

A nematode belonging to the family Mermithidae.

Gzhelistella[43]

Gen. et sp. nov

Valid

Davydov et al.

Carboniferous (Gzhelian)

Kosherovo Formation

 Russia
( Moscow Oblast)

A calcareous sponge. The type species is G. cornigera. Published online in 2024, but the issue date is listed as December 2023.

Lobodiscus[44]

Gen. et sp. nov

Zhao et al.

Ediacaran

Dengying Formation

 China

A possible member of Trilobozoa. The type species is L. tribrachialis.

Porkuniconchus[45]

Gen. et sp. nov

Valid

Vinn, Wilson & Toom

Ordovician (Hirnantian)

Ärina Formation

 Estonia

A member of Cornulitida. The type species is P. fragilis.

Timorebestia[46]

Gen. et sp. nov

Park et al.

Cambrian

Sirius Passet Lagerstätte

 Greenland

A member of the stem group of Chaetognatha. The type species is K. koprii.

Research

  • Cao, Meng & Cai (2024) use electrochemical methods to simulate the process of tube generation of Cloudina under the same phosphorus content as modern seawater.[47]
  • Wang et al. (2024) describe fossil material of two distinct types of archaeocyaths from the Cambrian Shuijingtuo and Xiannüdong formations (China), including fossils with complicated interior network of canals which might be remains of a water filtration mechanism more complex and efficient than the ones seen in sponges.[48]
  • Turk et al. (2024) redescribe the type material of Archaeichnium haughtoni, and interpret it as one of the earliest examples of marine worm burrow linings in the fossil record reported to date.[49]

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images
Colum tekini[50] sp. nov Valid Sashida & Ito in Sashida et al. Upper Triassic (lower Norian)  Thailand A pseudodictyomitrid radiolarian. Published online in 2023, but the issue date is listed as January 2024.

Research

  • Demoulin et al. (2024) interpret Polysphaeroides filiformis from the Proterozoic Mbuji-Mayi Supergroup (Democratic Republic of the Congo) as a photosynthetic cyanobacterium representing the oldest unambiguous complex fossil member of Stigonemataceae known to date.[51]
  • Evidence of preservation of thylakoid membranes within 1.78- to 1.73-billion-year-old fossils of Navifusa majensis from the McDermott Formation (Tawallah Group; Australia) and in 1.01- to 0.9-billion-year-old specimens from the Grassy Bay Formation (Shaler Supergroup; Canada) is reported by Demoulin et al. (2023).[52]
  • A study comparing the preservation of fossils of cyanobacterial assemblages from the Ediacaran Gaojiashan biota and from the Cambrian Kuanchuanpu biota (China) is published by Min et al. (2024), who interpret the differences of preservation modes of the studied fossils as resulting from changes of atmospheric CO2 levels, which may have risen to approximately ten times present atmospheric level during the Ediacaran–Cambrian transition, and from related changes in marine chemical conditions.[53]
  • Miao et al. (2024) describe 1.63-billion-year-old fossils of Qingshania magnifica from the Chuanlinggou Formation (China), and interpret the studied fossils as indicating that simple multicellularity evolved early in eukaryote history.[54]
  • A study on the depositional setting of the strata of the Diabaig and Loch na Dal formations (Scotland, United Kingdom) preserving approximately 1-billion-year-old eukaryotic microfossils is published by Nielson, Stüeken & Prave (2024), who interpret their findings as indicating that early eukaryotes from the studied formations lived in estuaries rather than lakes, and were likely exposed to frequently changing water conditions.[55]

History of life in general

  • Ediacaran shallow-marine macrofossils from the Llangynog Inlier (Wales, United Kingdom) are determined to be approximately 564.09 million years old by Clarke et al. (2024).[56]
  • New silicified fossil assemblage is described from the Ediacaran Dengying Formation (Shaanxi, China) by Dai et al. (2024), who interpret fossil material of Cloudina from this assemblage as indicating that Cloudina had a worldwide distribution in different paleoecologies and biofacies.[57]
  • Evidence from the strata of the Dengying, Yanjiahe and Shuijingtuo formations (China), interpreted as indicative of the existence of a relationship between variable oceanic oxygenation, nitrogen supply and the evolution of early Cambrian life, is presented by Wei et al. (2024).[58]
  • Slater (2024) describes a diverse assemblage of arthropod and molluscan microfossil from the Cambrian Stage 3 Mickwitzia Sandstone (Sweden), providing evidence of diversification of molluscan radulae which happened by the early Cambrian.[59]
  • Saleh et al. (2024) report the discovery of a new Early Ordovician Lagerstätte from Montagne Noire (France), preserving fossils of a diverse polar assemblage of both biomineralized and soft-bodied organisms (the Cabrières Biota).[60]
  • Evidence from strata from the Permian–Triassic transition from southwest China, interpreted as indicative of temporal decoupling of the terrestrial and marine extinctions in Permian tropics during the Permian–Triassic extinction event and of a protracted terrestrial extinction spanning approximately 1 million years, is presented by Wu et al. (2024).[61]
  • Revision of the fossil record of the Triassic tetrapods from Russia is published by Shishkin et al. (2024).[62]
  • Simms & Drost (2024) interpret Triassic caves within Carboniferous limestone outcrops in south-west Britain as Carnian in age, and consider terrestrial vertebrate fossils preserved in those caves to be Carnian or at least significantly pre-Rhaetian in age.[63]
  • Evidence from calcareous nannofossils and small foraminifera from the Transylvanian Basin (Romania), interpreted as indicative of the appearance of a diverse continental vertebrate faunal assemblage on Hațeg Island by the second half of the late Campanian, presence of kogaionid multituberculates in the earliest known Hațeg faunas, and post-Campanian arrivial of hadrosauroids and titanosaur sauropods on the island, is presented by Bălc et al. (2024).[64]
  • Fossil material of a reef biota that survived the Cretaceous–Paleogene extinction event, including scleractinian corals and domical and bulbous growth forms which might be fossils of calcified sponges, is described from the Maastrichtian and Paleocene strata from the Adriatic islands Brač and Hvar (Croatia) by Martinuš et al. (2024).[65]
  • New Miocene and Pleistocene vertebrate assemblages are described from the Sin Charoen sandpit (Nakhon Ratchasima province, Thailand) by Naksri et al. (2024), who intepret the Pleistocene assemblage as having strong faunal relationships with the Early-Middle Pleistocene faunas of Java (Indonesia).[66]

Other research

  • 563-million-year-old horizontal markings with similarities to horizontal animal trace fossils, reported from the Itajaí Basin (Brazil), are interpreted as pseudofossils of tectonic origin by Becker Kerber et al. (2024), who propose a set of criteria which can be used to evaluate the identity of putative trace fossils.[67]
  • A study on silicified fossils from the Ordovician Edinburg Formation (Virginia, United States), aiming to determine sources of potential bias in fossil recovery, is published by Jacobs et al. (2024).[68]
  • Evidence interpreted as indicative of strong ozone depletion of the atmosphere at the onset of the Permian–Triassic extinction event is presented by Li et al. (2024).[69]
  • Woolley et al. (2024) attempt to quantify the amount of phylogenetic information available in the global fossil records of non-avian theropod dinosaurs, Mesozoic birds and squamates, and find that the studies of the phylogenic relationships of extinct animals are less affected by disproportionate representation of taxa from specific geologic units (especially Lagerstätten) in the evolutionary tree when the entire global fossil record of the studied groups, rather than just fossils from specific geologic units, preserves higher amount of phylogenetic information; the authors also find that Late Cretaceous squamate fossils from the Djadochta and Barun Goyot formations (Mongolia) provide a diproportionally large amount of phylogenetic information available in the squamate fossil record.[70]
  • Eberth (2024) revises the stratigraphic architecture of the Campanian Belly River Group (Alberta, Canada).[71]
  • Evidence indicating that, in spite of high global temperatures, oxygen availability in the waters of the tropical North Pacific actually rose during the Paleocene–Eocene Thermal Maximum, is presented by Moretti et al. (2024), who argue that this oxygen rise in the ocean might have prevented a mass extinction during the Paleocene–Eocene Thermal Maximum.[72]
  • Wiseman, Charles & Hutchinson (2024) compare multiple reconstructions of the musculature of Australopithecus afarensis, evaluating the capability of different models to maintain an upright, single-support limb posture, and find that models which are otherwise identical might be either able or unable support the body posed on an extended limb solely as a result of changing the input architectural parameters and including or excluding an elastic tendon.[73]
  • Sullivan et al. (2024) argue that the process of generating rigorous reconstructions of extinct animals can lead to fresh inferences about the anatomy of the studied animals, and support their claims with examples from dinosaur paleontology.[74]

Paleoclimate

  • A multibillion-year history of seawater δ18O, temperature, and marine and terrestrial clay abundance is reconstructed by Isson & Rauzi (2024), who report evidence interpreted as indicative of temperate Proterozoic climate, and evidence indicating that declines in clay authigenesis coincided with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants.[75]
  • A study on the geochemistry of Jurassic deposits of the External Rif Chain (Morocco), providing evidence of climate changes in northwest Gondwana during the Jurassic period (from cool climate with low rainfall and productivity during the Early Jurassic, to moister, warmer climate during the Middle and Late Jurassic, subsequently returning to arid and cool climate during the Late Jurassic), is published by Kairouani et al. (2024).[76]
  • Clark et al. (2024) present a new reconstruction of global temperature changes over the past 4.5 million years, interpreted as consistent with changes in the carbon cycle.[77]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Choi, S.-W.; Graf, L.; Choi, J. W.; Jo, J.; Boo, G. H.; Kawai, H.; Choi, C. G.; Xiao, S.; Knoll, A. H.; Andersen, R. A.; Yoon, H. S. (2024). "Ordovician origin and subsequent diversification of the brown algae". Current Biology. doi:10.1016/j.cub.2023.12.069. PMID 38262417.
  3. ^ Kiel, S.; Goedert, J. L.; Huynh, T. L.; Krings, M.; Parkinson, D.; Romero, R.; Looy, C. V. (2024). "Early Oligocene kelp holdfasts and stepwise evolution of the kelp ecosystem in the North Pacific". Proceedings of the National Academy of Sciences of the United States of America. 121 (4). e2317054121. doi:10.1073/pnas.2317054121. PMC 10823212. PMID 38227671.
  4. ^ Kundu, S.; Khan, M. A. (2023). "Black mildew disease on the Siwalik (Miocene) monocot leaves of Western Himalaya, India caused by Meliolinites". Fungal Biology. 128 (1): 1626–1637. doi:10.1016/j.funbio.2023.12.006.
  5. ^ Garcia Cabrera, N.; Krings, M. (2024). "Fungi colonizing bulbils of the charophyte green alga Palaeonitella cranii from the Lower Devonian Rhynie chert, Scotland". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 99–117. doi:10.1127/njgpa/2023/1172.
  6. ^ a b c Luo, Z.; Shi, G.; Lin, W.; Chen, J.; Liu, J.; Bai, H.; Liang, K.; Yao, L.; Huang, X.; Qie, W.; Wang, Y. (2024). "Upper Carboniferous Corals around the Junggar Basin, northern Xinjiang, NW China". Acta Palaeontologica Sinica. doi:10.19800/j.cnki.aps.2023013.
  7. ^ a b c d Jin, J.; Rasmussen, C. M. Ø.; Sheehan, P. M.; Harper, D. A. T. (2024). "Late Ordovician and early Silurian virgianid and stricklandioid brachiopods from North Greenland: implications for a warm-water faunal province". Papers in Palaeontology. 10 (1). e1544. doi:10.1002/spp2.1544.
  8. ^ Gaudin, J. (2024). "Chenshichonetes nom. nov., a new replacement name for Robertsella Chen & Shi, 2003 (Brachiopoda, Rugosochonetidae)". Zootaxa. 5403 (2): 293–294. doi:10.11646/zootaxa.5403.2.8.
  9. ^ Płachno, B. J.; Benyoucef, M.; Mekki, F.; Adaci, M.; Bouchemla, I.; Jain, S.; Krajewski, M.; Salamon, M. A. (2024). "Copernicrinus zamori gen. et sp. nov., the oldest thiolliericrinid crinoid (Crinoidea, Echinodermata) from the Bajocian strata of northwestern Algeria, Africa". Journal of Palaeogeography. doi:10.1016/j.jop.2024.02.001.
  10. ^ Schlüter, N. (2024). "One steps out of line—A "modern" Micraster species (Echinoidea, Spatangoida) with some old-fashioned look, Micraster ernsti sp. nov. from the Campanian (Cretaceous)". Zootaxa. 5403 (1): 80–90. doi:10.11646/zootaxa.5403.1.5.
  11. ^ Rahman, I; Zamora, S (January 2, 2024). "Origin and Early Evolution of Echinoderms". Annual Review of Earth and Planetary Sciences. 52. doi:10.1146/annurev-earth-031621-113343.
  12. ^ Novack-Gottshall, P. M.; Purcell, J.; Sultan, A.; Ranjha, I.; Deline, B.; Sumrall, C. D. (2024). "Ecological novelty at the start of the Cambrian and Ordovician radiations of echinoderms". Palaeontology. 67 (1). e12688. doi:10.1111/pala.12688.
  13. ^ Bohatý, J.; Poschmann, M. J.; Müller, P.; Ausich, W. I. (2024). "Putting a crinoid on a stalk: new evidence on the Devonian diplobathrid camerate Monstrocrinus". Journal of Paleontology: 1–18. doi:10.1017/jpa.2023.84.
  14. ^ a b c d Orchard, M. J.; Golding, M. L. (2024). "The Neogondolella constricta (Mosher and Clark, 1965) group in the Middle Triassic of North America: speciation and distribution". Journal of Paleontology: 1–31. doi:10.1017/jpa.2023.52.
  15. ^ Zhen, Y. Y. (2024). "Taxonomic revision of the genus Stiptognathus (Conodonta) from the Lower Ordovician of Australia and its biostratigraphical and palaeobiogeographical significance". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2024.2306623.
  16. ^ Golding, M. L.; Kılıç, A. M. (2024). "Reconstruction of the multielement apparatus of the conodont Gladigondolella tethydis (Huckriede) using multivariate statistical analysis; implications for taxonomy, stratigraphy, and evolution". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 1–18. doi:10.54103/2039-4942/19954.
  17. ^ MacDougall, M. J.; Jannel, A.; Henrici, A. C.; Berman, D. S.; Sumida, S. S.; Martens, T.; Fröbisch, N. B.; Fröbisch, J. (2024). "A new recumbirostran 'microsaur' from the lower Permian Bromacker locality, Thuringia, Germany, and its fossorial adaptations". Scientific Reports. 14. 4200. doi:10.1038/s41598-023-46581-3. PMC 10879142. PMID 38378723.
  18. ^ Pinheiro, Felipe L.; Eltink, Estevan; Paes‐Neto, Voltaire D.; Machado, Arielli F.; Simões, Tiago R.; Pierce, Stephanie E. (2024-01-19). "Interrelationships among Early Triassic faunas of Western Gondwana and Laurasia as illuminated by a new South American benthosuchid temnospondyl". The Anatomical Record. doi:10.1002/ar.25384. ISSN 1932-8486. PMID 38240478.
  19. ^ Werneburg, R.; Witzmann, F.; Rinehart, L.; Fischer, J.; Voigt, S. (2024). "A new eryopid temnospondyl from the Carboniferous–Permian boundary of Germany". Journal of Paleontology: 1–31. doi:10.1017/jpa.2023.58.
  20. ^ Gómez, R. O.; Ventura, T.; Turazzini, G. F.; Marivaux, L.; Flores, R. A.; Boscaini, A.; Fernández-Monescillo, M.; Mamani Quispe, B.; Prámparo, M. B.; Fauquette, S.; Martin, C.; Münch, P.; Pujos, F.; Antoine, P.-O. (2024). "A new early water frog (Telmatobius) from the Miocene of the Bolivian Altiplano". Papers in Palaeontology. 10 (1). e1543. doi:10.1002/spp2.1543.
  21. ^ Santos, R. O.; Wilkinson, M.; Couto Ribeiro, G.; Carvalho, A. B.; Zaher, H. (2024). "The first fossil record of an aquatic caecilian (Gymnophiona: Typhlonectidae)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad188.
  22. ^ Porro, L. B.; Martin-Silverstone, E.; Rayfield, E. J. (2024). "Descriptive anatomy and three-dimensional reconstruction of the skull of the tetrapod Eoherpeton watsoni Panchen, 1975 from the Carboniferous of Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–21. doi:10.1017/S175569102300018X.
  23. ^ Schoch, R. R. (2024). "Cranial morphology and phylogenetic relationships of the Late Triassic temnospondyl Hyperokynodon keuperinus". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 147–160. doi:10.1127/njgpa/2023/1175.
  24. ^ Marjanović, D.; Maddin, H. C.; Olori, J. C.; Laurin, M. (2024). "The new problem of Chinlestegophis and the origin of caecilians (Amphibia, Gymnophionomorpha) is highly sensitive to old problems of sampling and character construction". Fossil Record. 27 (1): 55–94. doi:10.3897/fr.27.e109555.
  25. ^ Syromyatnikova, E. V.; Titov, V. V.; Tesakov, A. S.; Skutschas, P. P. (2024). "A "preglacial" giant salamander from Europe: new record from the Late Pliocene of Caucasus". Comptes Rendus Palevol. 23 (3): 45–57. doi:10.5852/cr-palevol2024v23a3.
  26. ^ Du, B.; Zhang, J.; Gómez, R. O.; Dong, L.; Zhang, M.; Lei, X.; Li, A.; Dai, S. (2024). "A Cretaceous frog with eggs from northwestern China provides fossil evidence for sexual maturity preceding skeletal maturity in anurans". Proceedings of the Royal Society B: Biological Sciences. 291 (2016). 20232320. doi:10.1098/rspb.2023.2320. PMC 10846944. PMID 38320608.
  27. ^ Villa, A.; Macaluso, L.; Mörs, T. (2024). "Miocene and Pliocene amphibians from Hambach (Germany): new evidence for a late Neogene refuge in northwestern Europe". Palaeontologia Electronica. 27 (1). 27.1.a3. doi:10.26879/1323.
  28. ^ Reisz, R. R.; Maho, T.; Modesto, S. P. (2024). "Recumbirostran 'microsaurs' are not amniotes". Journal of Systematic Palaeontology. 22 (1). 2296078. doi:10.1080/14772019.2023.2296078.
  29. ^ Martin, T.; Averianov, A. O.; Lang, A. J.; Schultz, J. A.; Wings, O. (2024). "Docodontans (Mammaliaformes) from the Late Jurassic of Germany". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2300635.
  30. ^ Averianov, A. O.; Martin, T.; Lopatin, A. V.; Skutschas, P. P.; Vitenko, D. D.; Schellhorn, R.; Kolosov, P. N. (2024). "Docodontans from the Lower Cretaceous of Yakutia, Russia: new insights into diversity, morphology, and phylogeny of Docodonta". Cretaceous Research. 105836. doi:10.1016/j.cretres.2024.105836.
  31. ^ Duhamel, A.; Benoit, J.; Wynd, B.; Wright, A. M.; Rubidge, B. (2024). "Redescription of three basal anomodonts: a phylogenetic reassessment of the holotype of Eodicynodon oelofseni (NMQR 2913)". Frontiers in Earth Science. 11. 1220341. doi:10.3389/feart.2023.1220341.
  32. ^ Kerber, L.; Roese-Miron, L.; Medina, T. G. M.; da Roberto-da-Silva, L.; Cabreira, S. F.; Pretto, F. A. (2024). "Skull anatomy and paleoneurology of a new traversodontid from the Middle-Late Triassic of Brazil". The Anatomical Record. doi:10.1002/ar.25385. PMID 38282563.
  33. ^ Martinelli, A. G.; Ezcurra, M. D.; Fiorelli, L. E.; Escobar, J.; Hechenleitner, E. M.; von Baczko, M. B.; Taborda, J. R. A.; Desojo, J. B. (2024). "A new early-diverging probainognathian cynodont and a revision of the occurrence of cf. Aleodon from the Chañares Formation, northwestern Argentina: New clues on the faunistic composition of the latest Middle–?earliest Late Triassic Tarjadia Assemblage Zone". The Anatomical Record. doi:10.1002/ar.25388. PMID 38282519.
  34. ^ Singh, S. A.; Elsler, A.; Stubbs, T. L.; Rayfield, E. J.; Benton, M. J. (2024). "Predatory synapsid ecomorphology signals growing dynamism of late Palaeozoic terrestrial ecosystems". Communications Biology. 7. 201. doi:10.1038/s42003-024-05879-2. PMC 10874460. PMID 38368492.
  35. ^ Maho, T.; Holmes, R.; Reisz, R. R. (2024). "Visual methods for documenting the preservation of large-sized synapsids at Richards Spur". Comptes Rendus Palevol. 23 (7): 95–105. doi:10.5852/cr-palevol2024v23a7.
  36. ^ Sidor, C. A.; Mann, A. (2024). "The sternum and interclavicle of Aelurognathus tigriceps (Broom & Haughton, 1913) (Therapsida: Gorgonopsia), with comments on sternal evolution in therapsids". Comptes Rendus Palevol. 23 (6): 85–93. doi:10.5852/cr-palevol2024v23a6.
  37. ^ Benoit, J.; Kammerer, C. F.; Dollman, K.; Groenewald, D. D. P.; Smith, R. M. H. (2024). "Did gorgonopsians survive the end-Permian "Great Dying" ? A re-appraisal of three gorgonopsian specimens (Therapsida, Theriodontia) reported from the Triassic Lystrosaurus declivis Assemblage Zone, Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112044. doi:10.1016/j.palaeo.2024.112044.
  38. ^ Hendrickx, C.; Abdala, F.; Filippini, F. S.; Wills, S.; Benson, R.; Choiniere, J. N. (2024). "Evolution of postcanine complexity in Gomphodontia (Therapsida: Cynodontia)". The Anatomical Record. doi:10.1002/ar.25386. PMID 38282465.
  39. ^ Kaiuca, J. F. L.; Martinelli, A. G.; Schultz, C. L.; Fonseca, P. H. M.; Tavares, W. C.; Soares, M. B. (2024). "Weighing in on miniaturization: New body mass estimates for Triassic eucynodonts and analyses of body size evolution during the cynodont-mammal transition". The Anatomical Record. doi:10.1002/ar.25377. PMID 38229416.
  40. ^ Wang, D.; Qiang, Y.; Guo, J.; Vannier, J.; Song, Z.; Peng, J.; Zhang, B.; Sun, J.; Yu, Y.; Zhang, Y.; Zhang, T.; Yang, X.; Han, J. (2024). "Early evolution of the ecdysozoan body plan". eLife. doi:10.7554/eLife.94709.1.
  41. ^ a b Vinn, O.; Wilson, M. A.; Madison, A.; Ernst, A.; Toom, U. (2024). "Dwarf cornulitid tubeworms from the Hirnantian (Late Ordovician) of Estonia". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2318796.
  42. ^ Fang, H.; Poinar, G. O.; Wang, H.; Wang, B.; Luo, C. (2024). "First spider-parasitized mermithid nematode from mid-Cretaceous Kachin amber of northern Myanmar". Cretaceous Research. 105866. doi:10.1016/j.cretres.2024.105866.
  43. ^ Davydov, A. E.; Yashunsky, Yu. V.; Mirantsev, G. V.; Krutykh, A. A. (2024). "New Hypercalcified Calcareous Sponges from the Gzhelian Stage of the Moscow Region". Paleontological Journal. 57 (11): 1325–1351. doi:10.1134/S0031030123110035.
  44. ^ Zhao, M.; Mussini, G.; Li, Y.; Tang, F.; Vickers-Rich, P.; Li, M.; Chen, A. (2024). "A putative triradial macrofossil from the Ediacaran Jiangchuan Biota". iScience. 27 (2): 108823. doi:10.1016/j.isci.2024.108823. PMC 10831930. PMID 38303714.
  45. ^ Vinn, O.; Wilson, M. A.; Toom, U. (2024). "A new genus and species of cornulitid tubeworm from the Hirnantian (Late Ordovician) of Estonia". Journal of Paleontology: 1–7. doi:10.1017/jpa.2023.90.
  46. ^ Park, T.Y. S.; Nielsen, M. L.; Parry, L. A.; Sørensen, M. V.; Lee, M.; Kihm, J.H.; Ahn, I.; Park, C.; De Vivo, G.; Smith, M. P.; Harper, D. A. T.; Nielsen, A. T.; Vinther, J. (2024). "A giant stem-group chaetognath". Science Advances. 10 (1): eadi6678. doi:10.1126/sciadv.adi6678. PMC 10796117. PMID 38170772.
  47. ^ Cao, J.; Meng, F.; Cai, Y. (2024). "Simulation of Ediacaran Cloudina tubular growth model via electrochemical synthesis". Journal of Asian Earth Sciences. 106056. doi:10.1016/j.jseaes.2024.106056.
  48. ^ Wang, J.; Song, B.; Liang, Y.; Liang, K.; Zhang, Z. (2024). "The Internal Anatomy and Water Current System of Cambrian Archaeocyaths of South China". Life. 14 (2). 167. doi:10.3390/life14020167.
  49. ^ Turk, K. A.; Pulsipher, M. A.; Bergh, E.; Laflamme, M.; Darroch, S. A. F. (2024). "Archaeichnium haughtoni: a robust burrow lining from the Ediacaran–Cambrian transition of Namibia". Papers in Palaeontology. 10 (1). e1546. doi:10.1002/spp2.1546.
  50. ^ Sashida, K.; Hong, P.; Ito, T.; Salyapongse, S.; Putthapiban, P. (2024). "Late Triassic (Late Early to Early Middle Norian) and Late Triassic or Early Jurassic Radiolarians from Limestone in the Tha Sao Area, Kanchanaburi Province, Western Thailand: Low-Latitude Fauna in the Eastern Tethys". Paleontological Research. 28 (1): 37–67. doi:10.2517/PR220007.
  51. ^ Demoulin, C. F.; Sforna, M. C.; Lara, Y. J.; Cornet, Y.; Somogyi, A.; Medjoubi, K.; Grolimund, D.; Sanchez, D. F.; Tachoueres, R. T.; Addad, A.; Fadel, A.; Compère, P.; Javaux, E. J. (2024). "Polysphaeroides filiformis, a Proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution". iScience. 27 (2). 108865. doi:10.1016/j.isci.2024.108865. PMC 10837632. PMID 38313056.
  52. ^ Demoulin, C. F.; Lara, Y. J.; Lambion, A.; Javaux, E. J. (2024). "Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis". Nature. 625 (7995): 529–534. doi:10.1038/s41586-023-06896-7. PMID 38172638.
  53. ^ Min, X.; Hua, H.; Sun, B.; Dai, Q.; Luo, J. (2024). "Phosphatised calcified cyanobacteria at the terminal Ediacaran and the earliest Cambrian transition stage: Response to the paleoenvironment". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112057. doi:10.1016/j.palaeo.2024.112057.
  54. ^ Miao, L.; Yin, Z.; Knoll, A. H.; Qu, Y.; Zhu, M. (2024). "1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China". Science Advances. 10 (4): eadk3208. doi:10.1126/sciadv.adk3208. PMC 10807817. PMID 38266082.
  55. ^ Nielson, G. C.; Stüeken, E. E.; Prave, A. R. (2024). "Estuaries house Earth's oldest known non-marine eukaryotes". Precambrian Research. 401. 107278. doi:10.1016/j.precamres.2023.107278.
  56. ^ Clarke, A. J. I.; Kirkland, C. L.; Menon, L. R.; Condon, D. J.; Cope, J. C. W.; Bevins, R. E.; Glorie, S. (2024). "U–Pb zircon–rutile dating of the Llangynog Inlier, Wales: constraints on an Ediacaran shallow-marine fossil assemblage from East Avalonia". Journal of the Geological Society. doi:10.1144/jgs2023-081.
  57. ^ Dai, Q.; Hua, H.; Luo, J.; Min, X.; Liu, Z.; Zhang, S.; Gong, M.; Bai, L. (2024). "A new silicified microfossil assemblage from the Ediacaran Dengying Formation in South Shaanxi, China". Precambrian Research. 403. 107308. doi:10.1016/j.precamres.2024.107308.
  58. ^ Wei, K.; Cao, H.; Chen, F.; Wang, Z.; An, Z.; Huang, H.; Chen, C. (2024). "Fluctuation in redox conditions and the evolution of early Cambrian life constrained by nitrogen isotopes in the middle Yangtze Block, South China". Geological Magazine: 1–14. doi:10.1017/S0016756823000833.
  59. ^ Slater, B. J. (2024). "Life in the Cambrian shallows: Exceptionally preserved arthropod and mollusk microfossils from the early Cambrian of Sweden". Geology. doi:10.1130/G51829.1.
  60. ^ Saleh, F.; Lustri, L.; Gueriau, P.; Potin, G. J.-M.; Pérez-Peris, F.; Laibl, L.; Jamart, V.; Vite, A.; Antcliffe, J. B.; Daley, A. C.; Nohejlová, M.; Dupichaud, C.; Schöder, S.; Bérard, E.; Lynch, S.; Drage, H. B.; Vaucher, R.; Vidal, M.; Monceret, E.; Monceret, S.; Lefebvre, B. (2024). "The Cabrières Biota (France) provides insights into Ordovician polar ecosystems". Nature Ecology & Evolution: 1–12. doi:10.1038/s41559-024-02331-w. PMID 38337049.
  61. ^ Wu, Q.; Zhang, H.; Ramezani, J.; Zhang, F.-F.; Erwin, D. H.; Feng, Z.; Shao, L.-Y.; Cai, Y.-F.; Zhang, S.-H.; Xu, Y.-G.; Shen, S.-Z. (2024). "The terrestrial end-Permian mass extinction in the paleotropics postdates the marine extinction". Science Advances. 10 (5): eadi7284. doi:10.1126/sciadv.adi7284. PMC 10830061. PMID 38295161.
  62. ^ Shishkin, M. A.; Novikov, I. V.; Sennikov, A. G.; Golubev, V. K.; Morkovin, B. I. (2024). "Triassic Tetrapods of Russia". Paleontological Journal. 57 (12): 1353–1539. doi:10.1134/S0031030123120067.
  63. ^ Simms, M. J.; Drost, K. (2024). "Caves, dinosaurs and the Carnian Pluvial Episode: Recalibrating Britain's Triassic bone 'fissures'". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112041. doi:10.1016/j.palaeo.2024.112041.
  64. ^ Bălc, R.; Bindiu-Haitonic, R.; Kövecsi, S.-A.; Vremir, M.; Ducea, M.; Csiki-Sava, Z.; Tabără, D.; Vasile, Ș. (2024). "Integrated biostratigraphy of Upper cretaceous deposits from an exceptional continental vertebrate-bearing marine section (Transylvanian Basin, Romania) provides new constraints on the advent of 'dwarf dinosaur' faunas in Eastern Europe". Marine Micropaleontology. 187. 102328. doi:10.1016/j.marmicro.2023.102328.
  65. ^ Martinuš, M.; Cvetko Tešović, B.; Jurić, S.; Vlahović, I. (2024). "Patch reefs with scleractinian corals and layered domical and bulbous growth forms (calcified sponges?) in the upper Maastrichtian and lowermost Palaeocene platform carbonates, Adriatic islands of Brač and Hvar (Croatia)". Palaeogeography, Palaeoclimatology, Palaeoecology. 112056. doi:10.1016/j.palaeo.2024.112056.
  66. ^ Naksri, W.; Nishioka, Y.; Duangkrayom, J.; Métais, G.; Handa, N.; Jintasakul, P.; Martin, J. E.; Sila, S.; Sukdi, W.; Suasamong, K.; Tong, H.; Claude, J. (2024). "A new Miocene and Pleistocene continental locality from Nakhon Ratchasima in Northeastern Thailand and its importance for vertebrate biogeography". Annales de Paléontologie. 109 (4). 102659. doi:10.1016/j.annpal.2023.102659.
  67. ^ Becker Kerber, B.; Prado, G. M. E. M.; Archilha, N. L.; Warren, L. V.; Simões, M. G.; Lino, L. M.; Quiroz-Valle, F. R.; Mouro, L. D.; El Albani, A.; Mazurier, A.; Paim, P. S. G.; Chemale, F.; Zucatti da Rosa, A. L.; de Barros, G. E. B.; El Kabouri, J.; Basei, M. A. S. (2024). "Ediacaran tectographs from the Itajaí Basin: A cautionary tale from the Precambrian". Precambrian Research. 403. 107307. doi:10.1016/j.precamres.2024.107307.
  68. ^ Jacobs, G. S.; Jacquet, S. M.; Selly, T.; Schiffbauer, J. D.; Huntley, J. W. (2024). "Resolving taphonomic and preparation biases in silicified faunas through paired acid residues and X-ray microscopy". PeerJ. 12. e16767. doi:10.7717/peerj.16767. PMC 10838534. PMID 38313011.
  69. ^ Li, R.; Shen, S.-Z.; Xia, X.-P.; Xiao, B.; Feng, Y.; Chen, H. (2024). "Atmospheric ozone destruction and the end-Permian crisis: Evidence from multiple sulfur isotopes". Chemical Geology. 647. 121936. doi:10.1016/j.chemgeo.2024.121936.
  70. ^ Woolley, C. H.; Bottjer, D. J.; Corsetti, F. A.; Smith, N. D. (2024). "Quantifying the effects of exceptional fossil preservation on the global availability of phylogenetic data in deep time". PLOS ONE. 19 (2). e0297637. doi:10.1371/journal.pone.0297637. PMC 10866489. PMID 38354167.
  71. ^ Eberth, D. A. (2024). "Stratigraphic architecture of the Belly River Group (Campanian, Cretaceous) in the plains of southern Alberta: Revisions and updates to an existing model and implications for correlating dinosaur-rich strata". PLOS ONE. 19 (1). e0292318. doi:10.1371/journal.pone.0292318. PMC 10810474. PMID 38271406.
  72. ^ Moretti, S.; Auderset, A.; Deutsch, C.; Schmitz, R.; Gerber, L.; Thomas, E.; Luciani, V.; Petrizzo, M. R.; Schiebel, R.; Tripati, A.; Sexton, P.; Norris, R.; D'Onofrio, R.; Zachos, J.; Sigman, D. M.; Haug, G. H.; Martínez-García, A. (2024). "Oxygen rise in the tropical upper ocean during the Paleocene-Eocene Thermal Maximum". Science. 383 (6684): 727–731. doi:10.1126/science.adh4893. PMID 38359106.
  73. ^ Wiseman, A. L. A.; Charles, J. P.; Hutchinson, J. R. (2024). "Static versus dynamic muscle modelling in extinct species: a biomechanical case study of the Australopithecus afarensis pelvis and lower extremity". PeerJ. 12. e16821. doi:10.7717/peerj.16821. PMC 10838096. PMID 38313026.
  74. ^ Sullivan, C.; Sissons, R.; Sharpe, H.; Nguyen, K.; Theurer, B. (2024). "Skeletal reconstruction of fossil vertebrates as a process of hypothesis testing and a source of anatomical and palaeobiological inferences". Comptes Rendus Palevol. 23 (5): 69–83. doi:10.5852/cr-palevol2024v23a5.
  75. ^ Isson, T.; Rauzi, S. (2024). "Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history". Science. 383 (6683): 666–670. doi:10.1126/science.adg1366. PMID 38330122.
  76. ^ Kairouani, H.; Abbassi, A.; Zaghloul, M. N.; El Mourabet, M.; Micheletti, F.; Fornelli, A.; Mongelli, G.; Critelli, S. (2024). "The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution". Marine and Petroleum Geology. 106762. doi:10.1016/j.marpetgeo.2024.106762.
  77. ^ Clark, P. U.; Shakun, J. D.; Rosenthal, Y.; Bartlein, P. J. (2024). "Global and regional temperature change over the past 4.5 million years". Science. 383 (6685): 884–890. doi:10.1126/science.adi1908. PMID 38386742.