2024 in paleomammalogy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Altered pages. Add: pages, pmid, s2cid, issue, volume. Removed parameters. | Use this bot. Report bugs. | Suggested by Neko-chan | Category:CS1 maint: DOI inactive as of February 2024‎ | #UCB_Category 243/597
No edit summary
Line 137: Line 137:
* Review of developments in the study of [[Paleolithic]] bone knapping tool industries in the preceding years is published by Parfitt & Bello (2024), who reevaluate evidence of the presence of bone knapping tools at the [[Acheulean]] Horse Butchery Site (Boxgrove, West Sussex, United Kingdom) and at the [[Magdalenian]] [[Gough's Cave]] site (Somerset, United Kingdom).<ref>{{Cite journal|last1=Parfitt |first1=S. A. |last2=Bello |first2=S. M. |year=2024 |title=Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages |journal=Royal Society Open Science |volume=11 |issue=1 |at=231163 |doi=10.1098/rsos.231163 |pmid=38179084 |pmc=10762443 |doi-access=free |bibcode=2024RSOS...1131163P }}</ref>
* Review of developments in the study of [[Paleolithic]] bone knapping tool industries in the preceding years is published by Parfitt & Bello (2024), who reevaluate evidence of the presence of bone knapping tools at the [[Acheulean]] Horse Butchery Site (Boxgrove, West Sussex, United Kingdom) and at the [[Magdalenian]] [[Gough's Cave]] site (Somerset, United Kingdom).<ref>{{Cite journal|last1=Parfitt |first1=S. A. |last2=Bello |first2=S. M. |year=2024 |title=Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages |journal=Royal Society Open Science |volume=11 |issue=1 |at=231163 |doi=10.1098/rsos.231163 |pmid=38179084 |pmc=10762443 |doi-access=free |bibcode=2024RSOS...1131163P }}</ref>
* Pablos & [[Juan Luis Arsuaga|Arsuaga]] (2024) study the anatomy of [[metatarsal bones]] and foot [[Phalanx bone|phalanges]] of Middle Pleistocene hominins from the [[Archaeological site of Atapuerca#Sima de los Huesos (1983 to present)|Sima de los Huesos site]] (Spain), found to be generally more robust than corresponding bones of extant and fossil ''Homo sapiens'', and interpret the anatomy of the studied bones as supporting the placement of the Sima de los Huesos hominins as the sister evolutionaty group of Neanderthals.<ref>{{Cite journal|last1=Pablos |first1=A. |last2=Arsuaga |first2=J. L. |year=2024 |title=Metatarsals and foot phalanges from the Sima de los Huesos Middle Pleistocene site (Atapuerca, Burgos, Spain) |journal=The Anatomical Record |doi=10.1002/ar.25412 |pmid=38380556 |doi-access=free }}</ref>
* Pablos & [[Juan Luis Arsuaga|Arsuaga]] (2024) study the anatomy of [[metatarsal bones]] and foot [[Phalanx bone|phalanges]] of Middle Pleistocene hominins from the [[Archaeological site of Atapuerca#Sima de los Huesos (1983 to present)|Sima de los Huesos site]] (Spain), found to be generally more robust than corresponding bones of extant and fossil ''Homo sapiens'', and interpret the anatomy of the studied bones as supporting the placement of the Sima de los Huesos hominins as the sister evolutionaty group of Neanderthals.<ref>{{Cite journal|last1=Pablos |first1=A. |last2=Arsuaga |first2=J. L. |year=2024 |title=Metatarsals and foot phalanges from the Sima de los Huesos Middle Pleistocene site (Atapuerca, Burgos, Spain) |journal=The Anatomical Record |doi=10.1002/ar.25412 |pmid=38380556 |doi-access=free }}</ref>
* Review of the anatomy of the thorax and lumbar spine of the hominins from the Sima de los Huesos site is published by Gómez-Olivencia & Arsuaga (2024).<ref>{{Cite journal|last1=Gómez-Olivencia |first1=A. |last2=Arsuaga |first2=J. L. |year=2024 |title=The Sima de los Huesos thorax and lumbar spine: Selected traits and state-of-the-art |journal=The Anatomical Record |doi=10.1002/ar.25414 |doi-access=free }}</ref>
* A study on cut marks on a hyena [[phalanx bone]] from the Navalmaíllo Rock Shelter (Spain) is published by Moclán ''et al.'' (2024), who interpret the studied cut marks as evidence of skinning of the hyena pelt by Neanderthals.<ref>{{Cite journal|last1=Moclán |first1=A. |last2=Domínguez-Rodrigo |first2=M. |last3=Huguet |first3=R. |last4=Pizarro-Monzo |first4=M. |last5=Arsuaga |first5=J. L. |last6=Pérez-González |first6=A. |last7=Baquedano |first7=E. |year=2024 |title=Deep learning identification of anthropogenic modifications on a carnivore remain suggests use of hyena pelts by Neanderthals in the Navalmaíllo rock shelter (Pinilla del Valle, Spain) |journal=Quaternary Science Reviews |volume=329 |at=108560 |doi=10.1016/j.quascirev.2024.108560 }}</ref>
* A study on cut marks on a hyena [[phalanx bone]] from the Navalmaíllo Rock Shelter (Spain) is published by Moclán ''et al.'' (2024), who interpret the studied cut marks as evidence of skinning of the hyena pelt by Neanderthals.<ref>{{Cite journal|last1=Moclán |first1=A. |last2=Domínguez-Rodrigo |first2=M. |last3=Huguet |first3=R. |last4=Pizarro-Monzo |first4=M. |last5=Arsuaga |first5=J. L. |last6=Pérez-González |first6=A. |last7=Baquedano |first7=E. |year=2024 |title=Deep learning identification of anthropogenic modifications on a carnivore remain suggests use of hyena pelts by Neanderthals in the Navalmaíllo rock shelter (Pinilla del Valle, Spain) |journal=Quaternary Science Reviews |volume=329 |at=108560 |doi=10.1016/j.quascirev.2024.108560 }}</ref>
* Sedrati ''et al.'' (2024) report the discovery of Late Pleistocene footprints from a rocky beach in Larache ([[Morocco]]) representing the oldest known footprints produced by ''Homo sapiens'' reported from Northern Africa and the Southern Mediterranean.<ref>{{Cite journal|last1=Sedrati |first1=M. |last2=Morales |first2=J. A. |last3=Duveau |first3=J. |last4=El M'rini |first4=A. |last5=Mayoral |first5=E. |last6=Díaz-Martínez |first6=I. |last7=Anthony |first7=E. J. |last8=Bulot |first8=G. |last9=Sedrati |first9=A. |last10=Le Gall |first10=R. |last11=Santos |first11=A. |last12=Rivera-Silva |first12=J. |year=2024 |title=A Late Pleistocene hominin footprint site on the North African coast of Morocco |journal=Scientific Reports |volume=14 |issue=1 |at=1962 |doi=10.1038/s41598-024-52344-5 |pmid=38263453 |pmc=10806055 |doi-access=free |bibcode=2024NatSR..14.1962S }}</ref>
* Sedrati ''et al.'' (2024) report the discovery of Late Pleistocene footprints from a rocky beach in Larache ([[Morocco]]) representing the oldest known footprints produced by ''Homo sapiens'' reported from Northern Africa and the Southern Mediterranean.<ref>{{Cite journal|last1=Sedrati |first1=M. |last2=Morales |first2=J. A. |last3=Duveau |first3=J. |last4=El M'rini |first4=A. |last5=Mayoral |first5=E. |last6=Díaz-Martínez |first6=I. |last7=Anthony |first7=E. J. |last8=Bulot |first8=G. |last9=Sedrati |first9=A. |last10=Le Gall |first10=R. |last11=Santos |first11=A. |last12=Rivera-Silva |first12=J. |year=2024 |title=A Late Pleistocene hominin footprint site on the North African coast of Morocco |journal=Scientific Reports |volume=14 |issue=1 |at=1962 |doi=10.1038/s41598-024-52344-5 |pmid=38263453 |pmc=10806055 |doi-access=free |bibcode=2024NatSR..14.1962S }}</ref>
Line 482: Line 483:
====Carnivoran research====
====Carnivoran research====
* A study on genomes of [[Japanese wolf|Japanese wolves]] and dogs is published by Gojobori ''et al.'' (2024), who interpret their findings as indicating that the Japanese wolf was the closest known relative of the extinct gray wolf population which was ancestral to dogs, as well as indicative of an ancient genomic [[introgression]] from the Japanese wolf ancestry to dogs which likely happened before the dog's arrival in the Japanese archipelago.<ref>{{Cite journal|last1=Gojobori |first1=J. |last2=Arakawa |first2=N. |last3=Xiaokaiti |first3=X. |last4=Matsumoto |first4=Y. |last5=Matsumura |first5=S. |last6=Hongo |first6=H. |last7=Ishiguro |first7=N. |last8=Terai |first8=Y. |year=2024 |title=Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs |journal=Nature Communications |volume=15 |issue=1 |at=1680 |doi=10.1038/s41467-024-46124-y |pmid=38396028 |pmc=10891106 |doi-access=free }}</ref>
* A study on genomes of [[Japanese wolf|Japanese wolves]] and dogs is published by Gojobori ''et al.'' (2024), who interpret their findings as indicating that the Japanese wolf was the closest known relative of the extinct gray wolf population which was ancestral to dogs, as well as indicative of an ancient genomic [[introgression]] from the Japanese wolf ancestry to dogs which likely happened before the dog's arrival in the Japanese archipelago.<ref>{{Cite journal|last1=Gojobori |first1=J. |last2=Arakawa |first2=N. |last3=Xiaokaiti |first3=X. |last4=Matsumoto |first4=Y. |last5=Matsumura |first5=S. |last6=Hongo |first6=H. |last7=Ishiguro |first7=N. |last8=Terai |first8=Y. |year=2024 |title=Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs |journal=Nature Communications |volume=15 |issue=1 |at=1680 |doi=10.1038/s41467-024-46124-y |pmid=38396028 |pmc=10891106 |doi-access=free }}</ref>
* A study on the evolution of teeth of the giant panda is published by Jiangzuo ''et al.'' (2024), who find no evidence of significant differences between teeth of different members of the genus ''[[Ailuropoda]]'', and argue that the basic function of the giant panda teeth was constant since the Early Pleistocene.<ref>{{Cite journal|last1=Jiangzuo |first1=Q. |last2=Huang |first2=Z. |last3=Yu |first3=C. |last4=Tong |first4=H. |last5=Zhang |first5=B. |last6=Hu |first6=H. |last7=Wang |first7=D. |last8=Wang |first8=S. |last9=Liu |first9=J. |year=2024 |title=Dental shape evolution of the giant panda (''Ailuropoda'', Ursidae) during the Quaternary |journal=Historical Biology: An International Journal of Paleobiology |doi=10.1080/08912963.2024.2324446 }}</ref>
* Villalba de Alvarado ''et al.'' (2024) describe new fossil material of the [[Asian black bear]] from the Pleistocene sites in [[Spain]], including postcranial remains which fit within the range of morphological variation of extant members of the species.<ref>{{Cite journal|last1=Villalba de Alvarado |first1=M. |last2=Crégut-Bonnoure |first2=E. |last3=Arsuaga |first3=J. L. |last4=Collado Giraldo |first4=H. |last5=van der Made |first5=J. |last6=Gómez-Olivencia |first6=A. |title=Pleistocene Asian black bear (''Ursus thibetanus'' Cuvier, 1823) in the Iberian Peninsula: new evidence and a complete review |journal=Quaternary Science Reviews |year=2024 |volume=325 |at=108385 |doi=10.1016/j.quascirev.2023.108385 |bibcode=2024QSRv..32508385V |s2cid=266804633 }}</ref>
* Villalba de Alvarado ''et al.'' (2024) describe new fossil material of the [[Asian black bear]] from the Pleistocene sites in [[Spain]], including postcranial remains which fit within the range of morphological variation of extant members of the species.<ref>{{Cite journal|last1=Villalba de Alvarado |first1=M. |last2=Crégut-Bonnoure |first2=E. |last3=Arsuaga |first3=J. L. |last4=Collado Giraldo |first4=H. |last5=van der Made |first5=J. |last6=Gómez-Olivencia |first6=A. |title=Pleistocene Asian black bear (''Ursus thibetanus'' Cuvier, 1823) in the Iberian Peninsula: new evidence and a complete review |journal=Quaternary Science Reviews |year=2024 |volume=325 |at=108385 |doi=10.1016/j.quascirev.2023.108385 |bibcode=2024QSRv..32508385V |s2cid=266804633 }}</ref>
* Kastelic Kovačič ''et al.'' (2024) present a novel approach to sampling dental collagen which can be used to determine the diet and behavior of cave bears throughout their life, and apply their methods to cave bears remains from the Divje babe I cave ([[Slovenia]]), interpreting their findings as indicative of differences in the carbon isotope values from tooth collagen of hibernating individuals and those that failed to hibernate, as well as indicating that the juvenile cave bears did not suckle milk after the first hibernation.<ref>{{Cite journal|last1=Kastelic Kovačič |first1=U. |last2=Debeljak |first2=I. |last3=Potočnik |first3=D. |last4=Ogrinc |first4=N. |last5=Zupančič |first5=N. |title=A novel ontogeny-related sampling of dental tissues for stable isotopes interpretation of the paleobiology of the cave bear |journal=Quaternary Science Reviews |year=2024 |volume=325 |at=108481 |doi=10.1016/j.quascirev.2023.108481 |bibcode=2024QSRv..32508481K |s2cid=266831528 }}</ref>
* Kastelic Kovačič ''et al.'' (2024) present a novel approach to sampling dental collagen which can be used to determine the diet and behavior of cave bears throughout their life, and apply their methods to cave bears remains from the Divje babe I cave ([[Slovenia]]), interpreting their findings as indicative of differences in the carbon isotope values from tooth collagen of hibernating individuals and those that failed to hibernate, as well as indicating that the juvenile cave bears did not suckle milk after the first hibernation.<ref>{{Cite journal|last1=Kastelic Kovačič |first1=U. |last2=Debeljak |first2=I. |last3=Potočnik |first3=D. |last4=Ogrinc |first4=N. |last5=Zupančič |first5=N. |title=A novel ontogeny-related sampling of dental tissues for stable isotopes interpretation of the paleobiology of the cave bear |journal=Quaternary Science Reviews |year=2024 |volume=325 |at=108481 |doi=10.1016/j.quascirev.2023.108481 |bibcode=2024QSRv..32508481K |s2cid=266831528 }}</ref>

Revision as of 20:26, 7 March 2024

List of years in paleomammalogy
In paleontology
2021
2022
2023
2024
2025
2026
2027
In paleobotany
2021
2022
2023
2024
2025
2026
2027
In arthropod paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoentomology
2021
2022
2023
2024
2025
2026
2027
In paleomalacology
2021
2022
2023
2024
2025
2026
2027
In paleoichthyology
2021
2022
2023
2024
2025
2026
2027
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In archosaur paleontology
2021
2022
2023
2024
2025
2026
2027

This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2024, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2024.

Afrotherians

Proboscideans

Proboscidean research

  • Evidence from the study of molars of Notiomastodon platensis from Brazilian Quaternary fossiliferous assemblages, interpreted as indicating that N. platensis was susceptible to tartar development, is presented by Paiva, Alves-Silva & Barbosa (2024).[1]
  • A study on the histology of a rib of a specimen of Stegodon florensis florensis from the So'a Basin (Flores, Indonesia) is published by Basilia et al. (2024), who interpret the histology of the bone tissue as possibly indicative of a relatively long lifespan of the studied individual.[2]
  • Evidence from tooth enamel of a straight-tusked elephant specimen from the MIS 12 site Marathousa 1 (Greece), interpreted as indicating that the studied individual (as well as the hominins that processed its carcass) lived in stable environmental conditions with sufficient plant cover and limited seasonality, is presented by Roditi et al. (2024).[3]
  • Rowe et al. (2024) use isotopic and genetic data from a tusk of a female woolly mammoth from the Swan Point Archaeological Site (Alaska, United States) to trace the studied individual's lifetime movements, interpret their findings as indicative of movement of the studied individual approximately 1000 km northwest in the middle of her life, and compare the range of movement of the studied mammoth with the distribution of early archaeological sites in Alaska, arguing that early North Americans likely settled in the territories frequently used by mammoths.[4]
  • A review of the dwarf Sardinan mammoth species Mammuthus lamarmorai is presented by Palombo, Zedda and Zomboli (2024).[5]

Euarchontoglires

Primates

Primate research

  • Alba et al. (2024) describe new fossil material of Anoiapithecus brevirostris from the Miocene strata of the Abocador de Can Mata sequence in the Vallès-Penedès Basin (Spain).[6]
  • A study on the inner ear and probable locomotion of Lufengpithecus is published by Zhang et al. (2024), who report that Lufengpithecus and other Miocene stem apes had the bony labyrinth morphology intermediate between that of gibbons and great apes, and argue that stem apes shared a common pattern of locomotion that combined aspects of the locomotor behaviors of gibbons and chimpanzees.[7]
  • A study on the timeline and causes of extinction of Gigantopithecus blacki is published by Zhang et al. (2024), who use data from caves in the Chongzuo and Bubing Basin (China) to establish a regional window of extinction of G. blacki at 295.000–215.000 yers ago, and interpret the demise of G. blacki as caused by inability to adapt to changes in forest structure resulting from increased seasonality.[8]
  • A sample of possible teeth of Pongo devosi is described from the Zhongshan Cave by Liang et al. (2024), representing fossil material of the smallest fossil orangutans from southern China reported to date.[9]

General paleoanthropology

  • Braga & Grine (2024) describe new fossil material of Paranthropus robustus from the Kromdraai fossil site (South Africa), providing information on the anatomy of previously unknown portions of the juvenile cranium of P. robustus, and interpret the studied fossil as consistent with the presence of a significant sexual dimorphism in the studied species.[10]
  • Claims that the Melka Kunture site-complex (Ethiopia) includes Oldowan and early Acheulean material which is approximately 2.0-1.9 million-years-old, presented by Mussi et al. (2023)[11] and Muttoni et al. (2023),[12] are contested by Gossa et al. (2024).[13]
  • Evidence indicating that dental changes associated with later members of the genus Homo were not present in Homo habilis is presented by Davies et al. (2024).[14]
  • A study on the histology of teeth of Homo naledi, providing evidence of enamel growth resembling the one seen in modern humans, is published by Mahoney et al. (2024).[15]
  • Delezene et al. (2024) interpret low degree of morphological variation between teeth of different individuals of Homo naledi as consistent with the interpretation of known sample of fossils of H. naledi as including few or no individuals of one sex.[16]
  • Garba et al. (2024) determine the oldest stone tools from the Korolevo site (Ukraine) to be approximately 1.42 million years old, making the studied tools the earliest securely dated evidence of hominin presence in Europe reported to date.[17]
  • Ma et al. (2024) report evidence of the use of prepared-core technique at the Cenjiawan site in the Nihewan Basin (China), and interpret this finding as indicating that hominins with advanced technologies might have been present in high latitude East Asia as early as 1.1 million years ago.[18]
  • Review of developments in the study of Paleolithic bone knapping tool industries in the preceding years is published by Parfitt & Bello (2024), who reevaluate evidence of the presence of bone knapping tools at the Acheulean Horse Butchery Site (Boxgrove, West Sussex, United Kingdom) and at the Magdalenian Gough's Cave site (Somerset, United Kingdom).[19]
  • Pablos & Arsuaga (2024) study the anatomy of metatarsal bones and foot phalanges of Middle Pleistocene hominins from the Sima de los Huesos site (Spain), found to be generally more robust than corresponding bones of extant and fossil Homo sapiens, and interpret the anatomy of the studied bones as supporting the placement of the Sima de los Huesos hominins as the sister evolutionaty group of Neanderthals.[20]
  • Review of the anatomy of the thorax and lumbar spine of the hominins from the Sima de los Huesos site is published by Gómez-Olivencia & Arsuaga (2024).[21]
  • A study on cut marks on a hyena phalanx bone from the Navalmaíllo Rock Shelter (Spain) is published by Moclán et al. (2024), who interpret the studied cut marks as evidence of skinning of the hyena pelt by Neanderthals.[22]
  • Sedrati et al. (2024) report the discovery of Late Pleistocene footprints from a rocky beach in Larache (Morocco) representing the oldest known footprints produced by Homo sapiens reported from Northern Africa and the Southern Mediterranean.[23]
  • A study on the mechanical properties of tool-stones from the Diepkloof Rock Shelter (South Africa) is published by Schmidt et al. (2024), who argue that the Middle Stone Age people selected specific rocks that allowed the best trade-off between the expected properties of tools made from the rocks and the ease of acquiring rocks and producing tools.[24]
  • Evidence from the study of human remains from the Ilsenhöhle site in Ranis (Germany), interpreted as indicating that Homo sapiens reached parts of Europe north of the Alps by 45,000 years ago, is presented by Mylopotamitaki et al. (2024);[25] Pederzani et al. (2024) interpret people from Ilsenhöhle as living in environment characterized by temperatures substantially below modern-day conditions,[26] while Smith et al. (2024) report evidence interpreted as indicative of low-intensity use of the site, consistent with small, mobile groups occupying different localities for a short time, and indicative of low dietary variability, with a diet based on large terrestrial mammals.[27]
  • Yang et al. (2024) identify an Initial Upper Paleolithic assemblage at the Shiyu site in northern China, providing evidence of expansion of Homo sapiens into eastern Asia by about 45,000 years ago, as well as evidence of development of advanced cultural behaviours by people from the studied site.[28]
  • A study on five Paleolithic sites from the western Hisma Basin (Jordan) is published by Kadowaki et al. (2024), who find that in the studied area a major increase in the cutting-edge productivity happened after the shift from the Levallois technology to the blade technology in the Initial Upper Paleolithic (i.e. after the conventional Middle-Upper Paleolithic boundary), coinciding with the development of bladelet technology in the Early Upper Paleolithic instead, and argue that the Middle-Upper Paleolithic cultural transition was not a single sudden replacement.[29]
  • Conard & Rots (2024) describe a perforated baton made from mammoth ivory from the Hohle Fels Cave (Germany), and interpret is as a probable Aurignacian rope making tool.[30]
  • Baker et al. (2024) study personal ornaments of European hunter-gatherers living between 34,000 and 24,000 years ago, and interpret them as indicative of existence of nine distinct cultural entities during the time of the existence of the Gravettian technocomplex.[31]
  • Evidence from the eastern seaboard of Australia, interpret as indicative of human occupation by 30,000 years ago and possibly as early as 49,000–45,000 years ago, is presented by Adams et al. (2024).[32]
  • Hawkins et al. (2024) report the discovery of remains of a man and a woman interred in a single grave from the Ratu Mali 2 site (Kisar, Indonesia) which are at least 14.7-thousand-years-old, representing the oldest human burials with established funerary rites from Wallacea reported to date.[33]
  • A study aiming to identify settings viable for vertebrate and human populations in the north Pacific coast of North America during the growth and decay of the Cordilleran ice sheet, providing new age constraints for human coastal migration into North America, is published by Steffen (2024).[34]
  • The oldest evidence of the use of hare bone for bead production in western North America known to date is reported from the Clovis La Prele Mammoth site (Wyoming, United States) by Surovell et al. (2024).[35]
  • Remains of a stonewall, interpreted as most likely used as a driving lane for the reindeer hunt during the Younger Dryas or early Preboreal and thus representing one of the oldest known examples of hunting architecture worldwide and possibly the oldest man-made megastructure in Europe, are described from the Bay of Mecklenburg (Baltic Sea off the German coast) by Geersen et al. (2024).[36]
  • Evidence from ancient DNA from chewed pitch from the Mesolithic Huseby Klev site (Sweden), interpreted as indicating that people from this site suffered from dental diseases similar to modern periodontitis cases, is presented by Kırdök et al. (2024).[37]
  • A study on the genetic ancestries and social dynamics of Late Mesolithic individuals from Téviec, Hoedic and Champigny (France), representing some of the last Mesolithic hunter-gatherers in western Europe, is published by Simões et al. (2024), who report evidence of distinct social units of hunter-gatherers in Brittany that maintained intermarriage networks.[38]
  • Allentoft et al. (2024) present evidence from ancient genomes from Eurasia, interpreted as indicative of existence of a clear genetic division between Eurasian human populations living on the opposite sites of the boundary zone extending from the Black Sea to the Baltic which lasted throughout the Mesolithic and Neolithic, with large-scale shifts in genetic ancestry related to the arrival of the Early European Farmers visible only in the areas west of the boundary zone, and dissolving only after the spread of the Western Steppe Herders across western Eurasia.[39]

Rodents

Rodent research

  • Zack & Penkrot (2024) describe new fossil material of Lophiparamys debequensis from the Eocene Willwood Formation (Wyoming, United States), providing new information on the anatomy of this rodent and representing its first record from the Bighorn Basin.[40]
  • Taxonomic revision of fossils of members of the tribe Lemmini from the Early and Middle Pleistocene of Europe is published by Louis et al. (2024).[41]

Other euarchontoglires

Miscellaneous euarchontoglires research

Laurasiatherians

Artiodactyls

Cetaceans

Name Novelty Status Authors Age Type locality Country Notes Images

Aureia[44]

Gen. et sp. nov

Meekin, Fordyce & Coste

Oligocene

Otekaike Limestone Formation

 New Zealand

A member of the superfamily Platanistoidea. The type species is A. rerehua.

Echericetus[45]

Gen. et sp. nov

Valid

Hernández-Cisneros et al.

Oligocene

El Cien Formation

 Mexico

A member of the family Eomysticetidae. The type species is E. novellus.

Tohoraonepu[46] Gen. et sp. nov Corrie & Fordyce Oligocene Kokoamu Greensand  New Zealand A member of the family Kekenodontidae. The species species is T. nihokaiwaiu.
Cetacean research
  • A vertebra of a small-bodied member of the genus Pachycetus, showing low compactness compared to vertebrae of larger members of this genus, is described from the Western Scheldt Estuary at the Belgian-Dutch border (probably from the Bartonian Maldegem Formation) by van Vliet et al. (2024).[47]
  • Motani & Pyenson (2024) reevaluate the published body mass estimates of Perucetus colossus, and consider the likeliest body mass of the studied cetacean to fall within the 60–70 ton range.[48]
  • Tsai, Kimura & Hasegawa (2024) describe an aetiocetid skull from the Jinnobaru Formation of the Ashiya Group (Japan), and interpret this finding as indicative of coexistence of toothed and baleen-assisted mysticetes in the northwestern Pacific during the Oligocene.[49]
  • Nobile et al. (2024) describe fossil material of a member of the genus Kentriodon from the Lower Miocene Bolago Marl (Friulian-Venetian Basin, Italy), representing the first unambiguous record of this genus from Europe reported to date, and interpreted by the authors as likely to be the fossil material of the most ancient member of the genus.[50]
  • A probable mysticete tooth with similarities to cheek teeth of Llanocetus denticrenatus is described from the Oligocene Alzey Formation (Germany) by Hampe & von der Hocht (2024).[51]
  • Tanaka (2024) reports evidence indicative of the existence of a relationship between basihyal-thyrohyal shape and feeding strategy in baleen whales, and argues that the earliest members of Chaeomysticeti fed exclusively on small prey using the baleen plates for filtering, and that dietary preferences of members of Chaeomysticeti diversified later in their evolutionary history.[52]
  • Review of the fossil record of eomysticetids from New Zealand is published by Boessenecker & Richards (2024).[53]
  • Aiken et al. (2024) report the earliest cetacean remains in the Black Sea region, and report that the harbour porpoise, the common bottlenose dolphin and the common dolphin were present in the Bosphorus as early as 8000–7800 years ago, and that cetaceans reached the northern and northeastern Black Sea, including the Kerch Strait, by 5500 years ago at the latest.[54]

Other artiodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Aliusuellus[55]

Gen. et sp. nov

Valid

Bai et al.

Eocene (Irdinmanhan)

Erlian Basin

 China

A member of the family Tapirulidae. The type species is A. laolii.

Hispanodorcas longdongica[56]

Sp. nov

Valid

Wu et al.

Miocene

 China

A member of the family Bovidae belonging to the subfamily Antilopinae.

Irdinodon[55]

Gen. et sp. nov

Valid

Bai et al.

Eocene (Irdinmanhan)

Erlian Basin

 China

A member of the subfamily Lantianiinae. The type species is I. bicuspidata.

Paraphenacodus gabuniai[55]

Sp. nov

Valid

Bai et al.

Eocene (Arshantan)

Erlian Basin

 China

Other artiodactyl research
  • McKenzie et al. (2024) describe new fossil material of tetraconodontines and suine suids from the Vallesian site of Castell de Barberà (Spain), and interpret the studied fossils as indicating that Parachleuastochoerus valentini is a distinct species, and indicating that Versoporcus grivensis is a junior synonym of V. steinheimensis.[57]
  • Iannucci (2024) describes 1.47-million-years-old fragment of a metatarsal bone of a member of the genus Sus from the Peyrolles site (France), providing evidence of the presence of suids in Europe within the 1.8-to-1.2-million-years-ago interval.[58]
  • A study on changes of the distribution of the European fallow deer throughout its evolutionary history, as indicated by ancient and modern DNA, is published by Baker et al. (2024), who report that, although the range of this species covered most of Europe during the Eemian interglacial, it retreated to southern refugia during the last glacial period and did not disperse north afterwards, but rather was translocated by humans.[59]
  • A study on the distribution of the European and Persian fallow deers throughout the last 10,000 years, as inferred from zooarchaeological and biomolecular analysis of ancient and modern remains, historical sources and iconography, is published by Baker et al. (2024), who interpret their findings as indicating that after the Last Glacial Maximum the European fallow deer was likely restricted to Anatolia and the Balkans, while the range of the Persian fallow deer extended further west than previously proposed, as it was present at the Bronze Age/early Iron Age sites of Kinet Höyük and Kilise Tepe (Anatolia, Turkey).[60]
  • A study on the tooth wear in fossil bovids from the Tugen Hills Succession of the Baringo Basin (Kenya) is published by Greiner et al. (2024), who interpret their findings as indicative of increase of mixed-feeding behaviors in post-Miocene bovids.[61]
  • New fossil material of Miocene bovids is described from five localities from the Middle Siwalik (Pakistan) by Naz et al. (2024), who interpret the studied fossils as indicative of moist environment with abundant small bodies of standing water.[62]
  • Fidalgo et al. (2024) review the fossil record of hippopotamids on the Iberian Peninsula during the Quaternary, an interpret the fossil record as suggestive of a brief coexistence of Hippopotamus antiquus and the hippopotamus close to the extinction of the former species.[63]
  • Martino et al. (2024) describe fossil material of Hippopotamus cf. antiquus from Malagrotta, and interpret this finding as indicative of longer survival of the species in central Italy than in Portugal and Greece, i.e. slightly after 450,000 years ago.[64]

Carnivorans

Name Novelty Status Authors Age Type locality Country Notes Images

Fejfarictis[65]

Gen. et sp. nov

Valid

De Bonis et al.

Oligocene

 Czech Republic

An early aeluroid. The type species is F. valecensis.

Magerifelis[66]

Gen. et sp. nov

Salesa et al.

Miocene

 France
 Spain

A medium-sized feline. The type species is M. peignei.

Magophoca[67]

Gen. et sp. nov

Valid

Dewaele & de Muizon

Miocene (Tortonian)

Pisco Formation

 Peru

A monachine seal belonging to the tribe Lobodontini. The type species is M. brevirostris.

Seronectes[68]

Gen. et sp. nov

Hafed et al.

Neogene

 United States
( North Carolina)

A monachine seal. The type species is S. meherrinensis.

Valenictus sheperdi[69]

Sp. nov

Boessenecker et al.

Pliocene

Purisima Formation

 United States
( California)

Carnivoran research

  • A study on genomes of Japanese wolves and dogs is published by Gojobori et al. (2024), who interpret their findings as indicating that the Japanese wolf was the closest known relative of the extinct gray wolf population which was ancestral to dogs, as well as indicative of an ancient genomic introgression from the Japanese wolf ancestry to dogs which likely happened before the dog's arrival in the Japanese archipelago.[70]
  • A study on the evolution of teeth of the giant panda is published by Jiangzuo et al. (2024), who find no evidence of significant differences between teeth of different members of the genus Ailuropoda, and argue that the basic function of the giant panda teeth was constant since the Early Pleistocene.[71]
  • Villalba de Alvarado et al. (2024) describe new fossil material of the Asian black bear from the Pleistocene sites in Spain, including postcranial remains which fit within the range of morphological variation of extant members of the species.[72]
  • Kastelic Kovačič et al. (2024) present a novel approach to sampling dental collagen which can be used to determine the diet and behavior of cave bears throughout their life, and apply their methods to cave bears remains from the Divje babe I cave (Slovenia), interpreting their findings as indicative of differences in the carbon isotope values from tooth collagen of hibernating individuals and those that failed to hibernate, as well as indicating that the juvenile cave bears did not suckle milk after the first hibernation.[73]
  • Faggi et al. (2024) describe new fossil material of Meles thorali from the Early Pleistocene locality Saint-Vallier (France), and interpret M. thorali as a taxon distinct from the European badger and closely related to Meles teilhardi.[74]
  • Valenzuela-Toro, Gutstein & Suárez (2024) describe new fossil material of earless seals from the Bahía Inglesa Formation (Chile), including the first record of Hadrokirus martini outside Peru, a member of the genus Acrophoca morphologically distinguishable from A. longirostris, and four indeterminate seals with considerable morphological differences from known contemporaneous taxa.[75]

Eulipotyphlans

Eulipotyphlan research

  • Averianov & Voyta (2024) reinterpret fossil material of a putative Triassic stem mammal Tikitherium copei as a tooth of a Neogene shrew.[76]
  • Taxonomic revision of the fossil material of Late Pleistocene and Holocene shrews from the Koridornaya Cave (Russian Far East) is published by Omelko & Tiunov (2024).[77]

Perissodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Plesiaceratherium tongxinense[78]

Sp. nov

Valid

Sun, Deng & Wang

Miocene

 China

An aceratheriine rhinoceros.

Perissodactyl research

  • A study on the ecology of Mesaceratherium paulhiacense and Protaceratherium minutum from the Miocene (Aquitanian) Ulm-Westtangente locality (Germany) is published by Hullot et al. (2024), who interpret their findings as indicative of different feeding preferences of the studied species.[79]
  • Li et al. (2024) describe new fossil material of Pliorhinus ringstroemi from the Miocene deposits from the Linxia Basin (China), providing new information on the skeletal anatomy of this species, interpret P. ringstroemi as a distinct species related to P. megarhinus and P. miguelcrusafonti, and argue that Pliorhinus might have originated in Asia and migrated to Europe at the latest Miocene.[80]
  • A study on the fossil record of Miocene and Pliocene horses from the Upper Bone Valley Formation (Florida, United States) is published by Killingsworth & MacFadden (2024), who interpret their findings as indicating that both sampling bias and ecological causes might be responsible for the presence or absence of different horse taxa at fossil sites.[81]

Other laurasiatherians

Miscellaneous laurasiatherian research

  • A study on changes in the skull and teeth of Coquenia bondi during its ontogeny is published by Deraco, Abdala & García-López (2024).[82]
  • Ferrero et al. (2024) describe fossil material of Posnanskytherium desaguaderoi from the Pliocene Tafna Formation, representing the first record of the genus Posnanskytherium from Argentina and the southernmost record of this genus reported to date.[83]
  • Description of bone pathologies of two specimens of Toxodon platensis, including the first report of osteomyelitis in a notoungulate, is published by Luna et al. (2024).[84]
  • Fernández-Monescillo & Tauber (2024) report evidence indicative of decline in the size and body mass in the last known population of Mesotherium cristatum from the Bonaerian of the Corralito site (Argentina), interpreted as related to environmental changes in South America during the Pleistocene which caused reduction of the distribution area of M. cristatum.[85]

Xenarthrans

Pilosans

Pilosan research

  • Fossil material of a probable previously unidentified ground sloth taxon belonging to the genus Nothrotherium is described from the Abismo Ponta de Flecha cave (São Paulo, Brazil) by Chahud et al. (2024).[86]

Metatherians

Metatherian research

  • Carneiro et al. (2024) describe new fossil material of Carolocoutoia ferigoloi from the Eocene Itaboraí Basin (Brazil), and interpret Carolocoutoia as the sister taxon of Protodidelphis and as a specialized frugivore.[87]
  • Hu et al. (2024) estimate blood flow rates in the femora of extinct kangaroos belonging to the genera Macropus, Protemnodon, Sthenurus, Simosthenurus and Procoptodon, and interpret their findings as suggesting that the locomotion of the studied kangaroos involved applying greater forces to the leg bones compared to the locomotion of extant kangaroos.[88]
  • Redescription of "Silvaroo" buloloensis is published by Kerr & Prideaux (2024), who transfer this species to the genus Dorcopsoides.[89]
  • A tooth representing the first fossil material of a member of the genus Protemnodon from the lowland part of New Guinea is described from the Lachitu Cave (Papua New Guinea) by Koungoulos, Flannery & O'Connor (2024).[90]

Other mammals

Name Novelty Status Authors Age Type locality Country Notes Images

Indotriconodon[91]

Gen. et sp. nov

Valid

Bajpai et al.

Late Cretaceous (Maastrichtian)

 India

A member of Eutriconodonta. The type species is I. magnus.

Patagomaia[92]

Gen. et sp. nov

Valid

Chimento et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

A therian mammal of uncertain affinities, with an estimated body mass of 14 kg. The type species is P. chainko.

Other mammalian research

  • Evidence indicating that aspects of both shape and size of the lower fourth premolar can contribute to distinguishing between species belonging to the multituberculate genus Mesodma is presented by Ashbaugh et al. (2024).[93]

General mammalian research

  • A study comparing the utility of regression models derived from different skeletal predictors for estimating body mass of Mesozoic mammals is published by Huang et al. (2024).[94]
  • Jones, Travouillon & Janis (2024) compare variation in the hindlimb proportions of extant jerboas and extinct argyrolagids, providing evidence of convergent elongation of metatarsal which might be caused by metatarsal fusion and loss in the studied groups and by greater reliance on bipedalism.[95]
  • A study on changes of ecospace occupancy of European carnivorans throughout the Pleistocene is published by Iannucci (2024), who finds that hominins entered Europe at the time when the continent lacked middle-sized carnivorans that were either highly social active hunters or primarily scavengers, and that hominins had the opportunity to fill a vacant ecospace at the time.[96]

References

  1. ^ Paiva, A. C. F.; Alves-Silva, L.; Barbosa, F. H. S. (2024). "Characterization of dental calculus in the South American Quaternary proboscidean Notiomastodon platensis (Ameghino, 1888)". Journal of Quaternary Science. doi:10.1002/jqs.3602. S2CID 267568018.
  2. ^ Basilia, P.; Miszkiewicz, J. J.; Louys, J.; Wibowo, U. P.; van den Bergh, G. D. (2024). "Insights into dwarf stegodon (Stegodon florensis florensis) palaeobiology based on rib histology". Annales de Paléontologie. 109 (4). 102654. doi:10.1016/j.annpal.2023.102654. S2CID 267690501.
  3. ^ Roditi, E.; Bocherens, H.; Konidaris, G. E.; Athanassiou, A.; Tourloukis, V.; Karkanas, P.; Panagopoulou, E.; Harvati, K. (2024). "Life-history of Palaeoloxodon antiquus reveals Middle Pleistocene glacial refugium in the Megalopolis basin, Greece". Scientific Reports. 14 (1). 1390. Bibcode:2024NatSR..14.1390R. doi:10.1038/s41598-024-51592-9. PMC 10791645. PMID 38228659.
  4. ^ Rowe, A. G.; Bataille, C. P.; Baleka, S.; Combs, E. A.; Crass, B. A.; Fisher, D. C.; Ghosh, S.; Holmes, C. E.; Krasinski, K. E.; Lanoë, F.; Murchie, T. J.; Poinar, H.; Potter, B.; Rasic, J. T.; Reuther, J.; Smith, G. M.; Spaleta, K. J.; Wygal, B. T.; Wooller, M. J. (2024). "A female woolly mammoth's lifetime movements end in an ancient Alaskan hunter-gatherer camp". Science Advances. 10 (3): eadk0818. doi:10.1126/sciadv.adk0818. PMC 10793946. PMID 38232155.
  5. ^ Palombo, Maria Rita; Zedda, Marco; Zoboli, Daniel (March 2024). "The Sardinian Mammoth's Evolutionary History: Lights and Shadows". Quaternary. 7 (1): 10. doi:10.3390/quat7010010. ISSN 2571-550X.
  6. ^ Alba, D. M.; Bouchet, F.; Fortuny, J.; Robles, J. M.; Galindo, J.; Luján, À. H.; Moyà-Solà, S.; Zanolli, C. (2024). "New remains of the Miocene great ape Anoiapithecus brevirostris from Abocador de Can Mata". Journal of Human Evolution. 188. 103497. doi:10.1016/j.jhevol.2024.103497. PMID 38402672. S2CID 267928754.
  7. ^ Zhang, Y.; Ni, X.; Li, Q.; Stidham, T.; Lu, D.; Gao, F.; Zhang, C.; Harrison, T. (2024). "Lufengpithecus inner ear provides evidence of a common locomotor repertoire ancestral to human bipedalism". The Innovation. 5 (2). 100580. doi:10.1016/j.xinn.2024.100580.
  8. ^ Zhang, Y.; Westaway, K. E.; Haberle, S.; Lubeek, J. K.; Bailey, M.; Ciochon, R.; Morley, M. W.; Roberts, P.; Zhao, J.X.; Duval, M.; Dosseto, A.; Pan, Y.; Rule, S.; Liao, W.; Gully, G. A.; Lucas, M.; Mo, J.; Yang, L.; Cai, Y.; Wang, W.; Joannes-Boyau, R. (2024). "The demise of the giant ape Gigantopithecus blacki". Nature. 625 (7995): 535–539. Bibcode:2024Natur.625..535Z. doi:10.1038/s41586-023-06900-0. PMC 10794149. PMID 38200315.
  9. ^ Liang, H.; Harrison, T.; Shao, Q.; Bahain, J.-J.; Mo, J.; Feng, Y.; Liao, W.; Wang, W. (2024). "Evidence for the smallest fossil Pongo in southern China". Journal of Human Evolution. 189. 103507. doi:10.1016/j.jhevol.2024.103507. PMID 38417249. S2CID 268057973.
  10. ^ Braga, J.; Grine, F. E. (2024). "New craniodental fossils of Paranthropus robustus from Kromdraai, South Africa (2014–2017 excavations)". Journal of Human Evolution. 188. 103481. doi:10.1016/j.jhevol.2023.103481. PMID 38382132. S2CID 267781003.
  11. ^ Mussi, M.; Skinner, M. M.; Melis, R. T.; Panera, J.; Rubio-Jara, S.; Davies, T. W.; Geraads, D.; Bocherens, H.; Briatico, G.; Le Cabec, A.; Hublin, J.-J.; Gidna, A.; Bonnefille, R.; Di Bianco, L.; Méndez-Quintas, E. (2023). "Early Homo erectus lived at high altitudes and produced both Oldowan and Acheulean tools". Science. 382 (6671): 713–718. Bibcode:2023Sci...382..713M. doi:10.1126/science.add9115. PMID 37824630. S2CID 263971011.
  12. ^ Muttoni, G.; Perini, S.; Melis, R. T.; Mussi, M. (2023). "Chronology of the earliest peopling of the Ethiopian highlands at Melka Kunture pre-dating the 1.925 Ma base of the Olduvai subchron". Quaternary Science Reviews. 319. 108330. Bibcode:2023QSRv..31908330M. doi:10.1016/j.quascirev.2023.108330. S2CID 263694964.
  13. ^ Gossa, T.; Asrat, A.; Hovers, E.; Tholt, A. J.; Renne, P. R. (2024). "Claims for 1.9–2.0 Ma old early Acheulian and Oldowan occupations at Melka Kunture are not supported by a robust age model". Quaternary Science Reviews. 326. 108506. doi:10.1016/j.quascirev.2024.108506. S2CID 267083670.
  14. ^ Davies, T. W.; Gunz, P.; Spoor, F.; Alemseged, Z.; Gidna, A.; Hublin, J.-J.; Kimbel, W. H.; Kullmer, O.; Plummer, W. P.; Zanolli, C.; Skinner, M. M. (2024). "Dental morphology in Homo habilis and its implications for the evolution of early Homo". Nature Communications. 15 (1). 286. Bibcode:2024NatCo..15..286D. doi:10.1038/s41467-023-44375-9. PMC 10767101. PMID 38177110.
  15. ^ Mahoney, P.; McFarlane, G.; Taurozzi, A. J.; Madupe, P. P.; O'Hara, M. C.; Molopyane, K.; Cappellini, E.; Hawks, J.; Skinner, M. M.; Berger, L. (2024). "Human-like enamel growth in Homo naledi". American Journal of Biological Anthropology. doi:10.1002/ajpa.24893. PMID 38180115.
  16. ^ Delezene, L. K.; Scott, J. E.; Irish, J. D.; Villaseñor, A.; Skinner, M. M.; Hawks, J.; Berger, L. R. (2024). "Sex-biased sampling may influence Homo naledi tooth size variation". Journal of Human Evolution. 187. 103490. doi:10.1016/j.jhevol.2023.103490. PMID 38266614. S2CID 267209160.
  17. ^ Garba, R.; Usyk, V.; Ylä-Mella, L.; Kameník, J.; Stübner, K.; Lachner, J.; Rugel, G.; Veselovský, F.; Gerasimenko, N.; Herries, A. I. R.; Kučera, J.; Knudsen, M. F.; Jansen, J. D. (2024). "East-to-west human dispersal into Europe 1.4 million years ago". Nature: 1–6. doi:10.1038/s41586-024-07151-3. PMID 38448591.
  18. ^ Ma, D.-D.; Pei, S.-W.; Xie, F.; Ye, Z.; Wang, F.-G.; Xu, J.-Y.; Deng, C.-L.; de la Torre, I. (2024). "Earliest Prepared core technology in Eurasia from Nihewan (China): Implications for early human abilities and dispersals in East Asia". Proceedings of the National Academy of Sciences of the United States of America. 121 (11). e2313123121. doi:10.1073/pnas.2313123121. PMID 38437546.
  19. ^ Parfitt, S. A.; Bello, S. M. (2024). "Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages". Royal Society Open Science. 11 (1). 231163. Bibcode:2024RSOS...1131163P. doi:10.1098/rsos.231163. PMC 10762443. PMID 38179084.
  20. ^ Pablos, A.; Arsuaga, J. L. (2024). "Metatarsals and foot phalanges from the Sima de los Huesos Middle Pleistocene site (Atapuerca, Burgos, Spain)". The Anatomical Record. doi:10.1002/ar.25412. PMID 38380556.
  21. ^ Gómez-Olivencia, A.; Arsuaga, J. L. (2024). "The Sima de los Huesos thorax and lumbar spine: Selected traits and state-of-the-art". The Anatomical Record. doi:10.1002/ar.25414.
  22. ^ Moclán, A.; Domínguez-Rodrigo, M.; Huguet, R.; Pizarro-Monzo, M.; Arsuaga, J. L.; Pérez-González, A.; Baquedano, E. (2024). "Deep learning identification of anthropogenic modifications on a carnivore remain suggests use of hyena pelts by Neanderthals in the Navalmaíllo rock shelter (Pinilla del Valle, Spain)". Quaternary Science Reviews. 329. 108560. doi:10.1016/j.quascirev.2024.108560.
  23. ^ Sedrati, M.; Morales, J. A.; Duveau, J.; El M'rini, A.; Mayoral, E.; Díaz-Martínez, I.; Anthony, E. J.; Bulot, G.; Sedrati, A.; Le Gall, R.; Santos, A.; Rivera-Silva, J. (2024). "A Late Pleistocene hominin footprint site on the North African coast of Morocco". Scientific Reports. 14 (1). 1962. Bibcode:2024NatSR..14.1962S. doi:10.1038/s41598-024-52344-5. PMC 10806055. PMID 38263453.
  24. ^ Schmidt, P.; Pappas, I.; Porraz, G.; Berthold, C.; Nickel, K. G. (2024). "The driving force behind tool-stone selection in the African Middle Stone Age". Proceedings of the National Academy of Sciences of the United States of America. 121 (10). e2318560121. doi:10.1073/pnas.2318560121. PMID 38408239. S2CID 268028990.
  25. ^ Mylopotamitaki, D.; Weiss, M.; Fewlass, H.; Zavala, E. I.; Rougier, H.; Sümer, A. P.; Hajdinjak, M.; Smith, G. M.; Ruebens, K.; Sinet-Mathiot, V.; Pederzani, S.; Essel, E.; Harking, F. S.; Xia, H.; Hansen, J.; Kirchner, A.; Lauer, T.; Stahlschmidt, M.; Hein, M.; Talamo, S.; Wacker, L.; Meller, H.; Dietl, H.; Orschiedt, J.; Olsen, J. V.; Zeberg, H.; Prüfer, K.; Krause, J.; Meyer, M.; Welker, F.; McPherron, S. P.; Schüler, T.; Hublin, J.-J. (2024). "Homo sapiens reached the higher latitudes of Europe by 45,000 years ago". Nature. 626 (7998): 341–346. Bibcode:2024Natur.626..341M. doi:10.1038/s41586-023-06923-7. PMC 10849966. PMID 38297117.
  26. ^ Pederzani, S.; Britton, K.; Trost, M.; Fewlass, H.; Bourgon, N.; McCormack, J.; Jaouen, K.; Dietl, H.; Döhle, H.-J.; Kirchner, A.; Lauer, T.; Le Corre, M.; McPherron, S. P.; Meller, H.; Mylopotamitaki, D.; Orschiedt, J.; Rougier, H.; Ruebens, K.; Schüler, T.; Sinet-Mathiot, V.; Smith, G. M.; Talamo, S.; Tütken, T.; Welker, F.; Zavala, E. I.; Weiss, M.; Hublin, J.-J. (2024). "Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany". Nature Ecology & Evolution: 1–11. doi:10.1038/s41559-023-02318-z. PMID 38297139.
  27. ^ Smith, G. M.; Ruebens, K.; Zavala, E. I.; Sinet-Mathiot, V.; Fewlass, H.; Pederzani, S.; Jaouen, K.; Mylopotamitaki, D.; Britton, K.; Rougier, H.; Stahlschmidt, M.; Meyer, M.; Meller, H.; Dietl, H.; Orschiedt, J.; Krause, J.; Schüler, T.; McPherron, S. P.; Weiss, M.; Hublin, J.-J.; Welker, F. (2024). "The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany". Nature Ecology & Evolution: 1–14. doi:10.1038/s41559-023-02303-6. PMID 38297138.
  28. ^ Yang, S.X.; Zhang, J.F.; Yue, J.P.; Wood, R.; Guo, Y.J.; Wang, H.; Luo, W.G.; Zhang, Y.; Raguin, E.; Zhao, K.L.; Zhang, Y.X.; Huan, F.X.; Hou, Y.M.; Huang, W.W.; Wang, Y.R.; Shi, J.M.; Yuan, B.Y.; Ollé, A.; Queffelec, A.; Zhou, L.P.; Deng, C.L.; d'Errico, F.; Petraglia, M. (2024). "Initial Upper Palaeolithic material culture by 45,000 years ago at Shiyu in northern China". Nature Ecology & Evolution: 1–12. doi:10.1038/s41559-023-02294-4. PMID 38238436. S2CID 267042058.
  29. ^ Kadowaki, S.; Wakano, J. Y.; Tamura, T.; Watanabe, A.; Hirose, M.; Suga, E.; Tsukada, K.; Tarawneh, O.; Massadeh, S. (2024). "Delayed increase in stone tool cutting-edge productivity at the Middle-Upper Paleolithic transition in southern Jordan". Nature Communications. 15 (1). 610. Bibcode:2024NatCo..15..610K. doi:10.1038/s41467-024-44798-y. PMC 10850154. PMID 38326315.
  30. ^ Conard, N. J.; Rots, V. (2024). "Rope making in the Aurignacian of Central Europe more than 35,000 years ago". Science Advances. 10 (5): eadh5217. doi:10.1126/sciadv.adh5217. PMC 10830101. PMID 38295167.
  31. ^ Baker, J.; Rigaud, S.; Pereira, D.; Courtenay, L. A.; d'Errico, F. (2024). "Evidence from personal ornaments suggest nine distinct cultural groups between 34,000 and 24,000 years ago in Europe". Nature Human Behaviour: 1–14. doi:10.1038/s41562-023-01803-6. PMID 38287173. S2CID 267318570.
  32. ^ Adams, S.; Norman, K.; Kemp, J.; Jacobs, Z.; Costelloe, M.; Fairbairn, A.; Robins, R.; Stock, E.; Moss, P.; Smith, T.; Love, S.; Manne, T.; Lowe, K. M.; Logan, I.; Manoel, M.; McFadden, K.; Burns, D.; Falkiner, Z.; Clarkson, C. (2024). "Early human occupation of Australia's eastern seaboard". Scientific Reports. 14 (1). 2579. Bibcode:2024NatSR..14.2579A. doi:10.1038/s41598-024-52000-y. PMC 10830458. PMID 38296988.
  33. ^ Hawkins, S.; Zetika, G. A.; Kinaston, R.; Firmando, Y. R.; Sari, D. M.; Suniarti, Y.; Lucas, M.; Roberts, P.; Reepmeyer, C.; Maloney, T.; Kealy, S.; Stirling, C.; Reid, M.; Barr, D.; Kleffmann, T.; Kumar, A.; Yuwono, P.; Litster, M.; Husni, M.; Ririmasse, M.; Mahirta; Mujabuddawat, M.; Harriyadi; O'Connor, S. (2024). "Earliest known funerary rites in Wallacea after the last glacial maximum". Scientific Reports. 14 (1). 282. Bibcode:2024NatSR..14..282H. doi:10.1038/s41598-023-50294-y. PMC 10762057. PMID 38168501.
  34. ^ Steffen, M. L. (2024). "New age constraints for human entry into the Americas on the north Pacific coast". Scientific Reports. 14 (1). 4291. doi:10.1038/s41598-024-54592-x. PMC 10881565. PMID 38383701.
  35. ^ Surovell, T. A.; Litynski, M. L.; Allaun, S. A.; Buckley, M.; Schoborg, T. A.; Govaerts, J. A.; O'Brien, M. J.; Pelton, S. R.; Sanders, P. H.; Mackie, M. E.; Kelly, R. L. (2024). "Use of hare bone for the manufacture of a Clovis bead". Scientific Reports. 14 (1). 2937. Bibcode:2024NatSR..14.2937S. doi:10.1038/s41598-024-53390-9. PMC 10844228. PMID 38316967.
  36. ^ Geersen, J.; Bradtmöller, M.; Schneider von Deimling, J.; Feldens, P.; Auer, J.; Held, P.; Lohrberg, A.; Supka, R.; Hoffmann, J. J. L.; Eriksen, B. V.; Rabbel, W.; Karlsen, H.-J.; Krastel, S.; Brandt, D.; Heuskin, D.; Lübke, H. (2024). "A submerged Stone Age hunting architecture from the Western Baltic Sea". Proceedings of the National Academy of Sciences of the United States of America. 121 (8). e2312008121. doi:10.1073/pnas.2312008121. PMC 10895374. PMID 38346187.
  37. ^ Kırdök, E.; Kashuba, N.; Damlien, H.; Manninen, M. A.; Nordqvist, B.; Kjellström, A.; Jakobsson, M.; Lindberg, A. M.; Storå, J.; Persson, P.; Andersson, B.; Aravena, A.; Götherström, A. (2024). "Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals". Scientific Reports. 13 (1). 22125. doi:10.1038/s41598-023-48762-6. PMC 10796427. PMID 38238372.
  38. ^ Simões, L. G.; Peyroteo-Stjerna, R.; Marchand, G.; Bernhardsson, C.; Vialet, A.; Chetty, D.; Alaçamlı, E.; Edlund, H.; Bouquin, D.; Dina, C.; Garmond, N.; Günther, T.; Jakobsson, M. (2024). "Genomic ancestry and social dynamics of the last hunter-gatherers of Atlantic France". Proceedings of the National Academy of Sciences of the United States of America. 121 (10). e2310545121. doi:10.1073/pnas.2310545121. PMID 38408241.
  39. ^ Allentoft, M. E.; et al. (2024). "Population genomics of post-glacial western Eurasia". Nature. 625 (7994): 301–311. Bibcode:2024Natur.625..301A. doi:10.1038/s41586-023-06865-0. PMC 10781627. PMID 38200295.
  40. ^ Zack, S. P.; Penkrot, T. A. (2024). "New material of Lophiparamys debequensis from the Willwood Formation (early Eocene) of Wyoming, including the first postcrania of the genus". Journal of Paleontology. 97 (6): 1293–1308. doi:10.1017/jpa.2023.88.
  41. ^ Louis, A.; Tereza, H.; Aurélien, R.; Sophie, M.; Oldrich, F.; Ivan, H. (2024). "Re-investigation of fossil Lemmini specimens from the early and Middle Pleistocene of Western and Central Europe: Evolutionary and paleoenvironmental implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 112128. doi:10.1016/j.palaeo.2024.112128.
  42. ^ Beard, K. C.; Métais, G. (2024). "Oldest record of Apatemyidae (Mammalia, Apatotheria) from Spain and the taxonomic status of Spanish paromomyids (Mammalia, Primatomorpha)". Journal of Vertebrate Paleontology. e2288651. doi:10.1080/02724634.2023.2288651.
  43. ^ Crowell, J. W.; Wible, J. R.; Chester, S. G. B. (2024). "Basicranial evidence suggests picrodontid mammals are not stem primates". Biology Letters. 20 (1). 20230335. doi:10.1098/rsbl.2023.0335. PMC 10776232. PMID 38195058.
  44. ^ Meekin, S.; Fordyce, R. E.; Coste, A. (2024). "Aureia rerehua, a new platanistoid dolphin from the Oligocene of New Zealand with a unique feeding method". Journal of the Royal Society of New Zealand: 1–20. doi:10.1080/03036758.2024.2314505.
  45. ^ Hernández-Cisneros, A. E.; Schwennicke, T.; Rochín-Bañaga, H.; Tsai, C.H. (2024). "Echericetus novellus n. gen. n. sp. (Cetacea, Mysticeti, Eomysticetidae), an Oligocene baleen whale from Baja California Sur, Mexico". Journal of Paleontology. 97 (6): 1309–1328. doi:10.1017/jpa.2023.80.
  46. ^ Corrie, Joshua E.; Fordyce, R. Ewan (2024-01-31). "A new genus and species of kekenodontid from the late Oligocene of New Zealand with comments on the evolution of tooth displacement in Cetacea". Journal of the Royal Society of New Zealand: 1–16. doi:10.1080/03036758.2023.2297696. ISSN 0303-6758.
  47. ^ van Vliet, H. J.; Bosselaers, M. E. J.; Munsterman, D. K.; Dijkshoorn, M. L.; de Groen, J. J.; Post, K. (2024). "A vertebra of a small species of Pachycetus from the North Sea and its inner structure and vascularity compared with other basilosaurid vertebrae from the same site". PeerJ. 12. e16541. doi:10.7717/peerj.16541.
  48. ^ Motani, R.; Pyenson, N. D. (2024). "Downsizing a heavyweight: factors and methods that revise weight estimates of the giant fossil whale Perucetus colossus". PeerJ. 12. e16978. doi:10.7717/peerj.16978. PMC 10909350. PMID 38436015.
  49. ^ Tsai, C.-H.; Kimura, T.; Hasegawa, Y. (2024). "Coexistence of Oligocene toothed and baleen-assisted mysticetes in the northwestern Pacific". Fossil Record. 27 (1): 95–100. Bibcode:2024FossR..27...95T. doi:10.3897/fr.27.e111567.
  50. ^ Nobile, F.; Collareta, A.; Perenzin, V.; Fornaciari, E.; Giusberti, L.; Bianucci, G. (2024). "Dawn of the Delphinidans: New Remains of Kentriodon from the Lower Miocene of Italy Shed Light on the Early Radiation of the Most Diverse Extant Cetacean Clade". Biology. 13 (2). 114. doi:10.3390/biology13020114. PMC 10887126. PMID 38392334.
  51. ^ Hampe, O.; von der Hocht, F. (2024). "The first cetacean from the early Oligocene of the SW German Mainz Basin: a probable cheek tooth of a mysticete (Mammalia: Cetacea)". PalZ. doi:10.1007/s12542-023-00676-4.
  52. ^ Tanaka, Y. (2024). "A feeding organ the basihyal and thyrohyal tells which size of prey do true baleen whales (Cetacea, Chaeomysticeti) eat". Palaeontologia Electronica. 27 (1). 27.1.a8. doi:10.26879/1311.
  53. ^ Boessenecker, R. W.; Richards, M. D. (2024). "A review of New Zealand Eomysticetidae (Mammalia, Cetacea) and implications for the evolution of baleen whales: new specimens, functional anatomy, and phylogeny". Journal of the Royal Society of New Zealand: 1–15. doi:10.1080/03036758.2023.2277739.
  54. ^ Aiken, M.; Gladilina, E.; Çakirlar, C.; Telizhenko, S.; Bejenaru, L.; Bukhsianidze, M.; Olsen, M. T.; Gol'din, P. (2024). "Earliest Records of Holocene Cetaceans in the Black Sea". Journal of Quaternary Science. doi:10.1002/jqs.3609.
  55. ^ a b c Bai, B.; Theodor, J. M.; Wang, Y-Q.; Meng, J. (2024). "New Early and Middle Eocene artiodactyls from the Erlian Basin, Inner Mongolia, China". Journal of Vertebrate Paleontology. e2294006. doi:10.1080/02724634.2023.2294006.
  56. ^ Wu, Y.; Wang, S.-Q.; Liang, Z.-Y.; Guo, D.-G.; Sun, B.-Y.; Liu, L.; Duan, K.; Chen, G.-Z. (2024). "First report of Hispanodorcas from the Late Miocene of China". Vertebrata PalAsiatica: 1. doi:10.19615/j.cnki.2096-9899.240123.
  57. ^ McKenzie, S.; Arranz, S. G.; Almécija, S.; De Miguel, D.; Alba, D. M. (2024). "Tetraconodontines and suines (Artiodactyla: Suidae) from the earliest Vallesian site of Castell de Barberà (Vallès-Penedès Basin, NE Iberian Peninsula)". Journal of Mammalian Evolution. 31 (1). 7. doi:10.1007/s10914-023-09695-z. S2CID 267420479.
  58. ^ Iannucci, A. (2024). "The Occurrence of Suids in the Post-Olduvai to Pre-Jaramillo Pleistocene of Europe and Implications for Late Villafranchian Biochronology and Faunal Dynamics". Quaternary. 7 (1). 11. doi:10.3390/quat7010011.
  59. ^ Baker, K. H.; Gray, H. W. I.; Lister, A. M.; Spassov, N.; Welch, A. J.; Trantalidou, K.; De Cupere, B.; Bonillas, E.; De Jong, M.; Çakırlar, C.; Sykes, N.; Hoelzel, A. R. (2024). "Ancient and modern DNA track temporal and spatial population dynamics in the European fallow deer since the Eemian interglacial". Scientific Reports. 14 (1). 3015. Bibcode:2024NatSR..14.3015B. doi:10.1038/s41598-023-48112-6. PMC 10861457. PMID 38346983.
  60. ^ Baker, K. H.; Miller, H.; Doherty, S.; Gray, H. W. I.; Daujat, J.; Çakırlar, C.; Spassov, N.; Trantalidou, K.; Madgwick, R.; Lamb, A. L.; Ameen, C.; Atici, L.; Baker, P.; Beglane, F.; Benkert, H.; Bendrey, R.; Binois-Roman, A.; Carden, R. F.; Curci, A.; De Cupere, B.; Detry, C.; Gál, E.; Genies, C.; Kunst, G. K.; Liddiard, R.; Nicholson, R.; Perdikaris, S.; Peters, J.; Pigière, F.; Pluskowski, A. G.; Sadler, P.; Sicard, S.; Strid, L.; Sudds, J.; Symmons, R.; Tardio, K.; Valenzuela, A.; van Veen, M.; Vuković, S.; Weinstock, J.; Wilkens, B.; Wilson, R. J. A.; Evans, J. A.; Hoelzel, A. R.; Sykes, N. (2024). "The 10,000-year biocultural history of fallow deer and its implications for conservation policy". Proceedings of the National Academy of Sciences of the United States of America. 121 (8). e2310051121. doi:10.1073/pnas.2310051121. PMC 10895352. PMID 38346198.
  61. ^ Greiner, E.; El-Shaarawi, W.; Orlikoff, E.; Sherwood, R.; O'Brien, K.; Kingston, J. (2024). "Dental mesowear from the Tugen Hills Succession (Baringo Basin, Kenya) demonstrates increase in mixed-feeding behavior of late Miocene to Plio-Pleistocene Bovidae". Palaeogeography, Palaeoclimatology, Palaeoecology. 639. 112058. Bibcode:2024PPP...63912058G. doi:10.1016/j.palaeo.2024.112058. S2CID 267457587.
  62. ^ Naz, S.; Sultana, T.; Sultana, S.; Yasin, R.; Samiullah, K. (2024). "New fossil remains of bovids from the Middle Siwaliks of Punjab, Pakistan". Historical Biology: An International Journal of Paleobiology: 1–18. doi:10.1080/08912963.2023.2300639. S2CID 267240217.
  63. ^ Fidalgo, D.; Madurell-Malapeira, J.; Martino, R.; Pandolfi, L.; Rosas, A. (2024). "An Updated Review of The Quaternary Hippopotamus Fossil Records from the Iberian Peninsula". Quaternary. 7 (1). 4. doi:10.3390/quat7010004.
  64. ^ Martino, R.; Marra, F.; Ríos, M.; Pandolfi, L. (2024). "The Middle Pleistocene Hippopotamus from Malagrotta (Latium, Italy): New Data and Future Perspectives". Quaternary. 7 (1). 13. doi:10.3390/quat7010013.
  65. ^ de Bonis, L.; Ekrt, B.; Kunstmüllerová, L.; Martínek, K.; Rapprich, V.; Wagner, J. (2024). "New early aeluroid carnivoran (Mammalia, Carnivora, Feliformia) from the classical palaeontological locality Valeč, the Czech Republic". Geodiversitas. 46 (1): 1–12. doi:10.5252/geodiversitas2024v46a1. S2CID 266964792.
  66. ^ Salesa, M. J.; Gamarra, J.; Siliceo, G.; Antón, M.; Morales, J. (2024). "Unraveling the diversity of early felines: a new genus of Felinae (Carnivora, Felidae) from the Middle Miocene of Madrid (Spain)". Journal of Vertebrate Paleontology. e2288924. doi:10.1080/02724634.2023.2288924.
  67. ^ Dewaele, L.; de Muizon, C. (2024). "A new monachine seal (Monachinae, Phocidae, Mammalia) from the Miocene of Cerro La Bruja (Ica department, Peru)". Geodiversitas. 46 (3): 31–100. doi:10.5252/geodiversitas2024v46a3.
  68. ^ Hafed, A. B.; Koretsky, I. A.; Nance, J. R.; Koper, L.; Rahmat, S. J. (2024). "New Neogene fossil phocid postcranial material from the Atlantic (USA)". Historical Biology: An International Journal of Paleobiology: 1–20. doi:10.1080/08912963.2024.2304593. S2CID 267654593.
  69. ^ Boessenecker, R. W.; Poust, A. W.; Boessenecker, S. J.; Churchill, M. (2024). "Tusked walruses (Carnivora: Odobenidae) from the Miocene–Pliocene Purisima Formation of Santa Cruz, California (U.S.A.): a new species of the toothless walrus Valenictus and the oldest records of Odobeninae and Odobenini". Journal of Vertebrate Paleontology. e2296567. doi:10.1080/02724634.2023.2296567.
  70. ^ Gojobori, J.; Arakawa, N.; Xiaokaiti, X.; Matsumoto, Y.; Matsumura, S.; Hongo, H.; Ishiguro, N.; Terai, Y. (2024). "Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs". Nature Communications. 15 (1). 1680. doi:10.1038/s41467-024-46124-y. PMC 10891106. PMID 38396028.
  71. ^ Jiangzuo, Q.; Huang, Z.; Yu, C.; Tong, H.; Zhang, B.; Hu, H.; Wang, D.; Wang, S.; Liu, J. (2024). "Dental shape evolution of the giant panda (Ailuropoda, Ursidae) during the Quaternary". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2324446.
  72. ^ Villalba de Alvarado, M.; Crégut-Bonnoure, E.; Arsuaga, J. L.; Collado Giraldo, H.; van der Made, J.; Gómez-Olivencia, A. (2024). "Pleistocene Asian black bear (Ursus thibetanus Cuvier, 1823) in the Iberian Peninsula: new evidence and a complete review". Quaternary Science Reviews. 325. 108385. Bibcode:2024QSRv..32508385V. doi:10.1016/j.quascirev.2023.108385. S2CID 266804633.
  73. ^ Kastelic Kovačič, U.; Debeljak, I.; Potočnik, D.; Ogrinc, N.; Zupančič, N. (2024). "A novel ontogeny-related sampling of dental tissues for stable isotopes interpretation of the paleobiology of the cave bear". Quaternary Science Reviews. 325. 108481. Bibcode:2024QSRv..32508481K. doi:10.1016/j.quascirev.2023.108481. S2CID 266831528.
  74. ^ Faggi, A.; Bartolini-Lucenti, S.; Madurell-Malapeira, J.; Abramov, A. V.; Puzachenko, A. Y.; Jiangzuo, Q.; Peiran, L.; Rook, L. (2024). "Quaternary Eurasian badgers: Intraspecific variability and species validity". Journal of Mammalian Evolution. 31. 3. doi:10.1007/s10914-023-09696-y. S2CID 267217919.
  75. ^ Valenzuela-Toro, A. M.; Gutstein, C. S.; Suárez, M. E. (2024). "Exceptional morphological and taxonomic diversity of early seals (Phocidae) from the Atacama Region, Chile". Historical Biology: An International Journal of Paleobiology: 1–23. doi:10.1080/08912963.2023.2301671. S2CID 267215554.
  76. ^ Averianov, A. O.; Voyta, L. L. (2024). "Putative Triassic stem mammal Tikitherium copei is a Neogene shrew". Journal of Mammalian Evolution. 31. 10. doi:10.1007/s10914-024-09703-w. S2CID 268170801.
  77. ^ Omelko, V. E.; Tiunov, M. P. (2024). "Late Quaternary shrews (Soricomorpha: Soricidae) from Priamurye (Russian Far East) according to data from Koridornaya Cave: species diversity and stratigraphical aspects". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-024-00601-w. S2CID 268178584.
  78. ^ Sun, D.; Deng, T.; Wang, S. (2024). "New materials of plesiacerathere (Perissodactyla, Rhinocerotidae) from the late Early Miocene of Northern China". PeerJ. 12. e16822. doi:10.7717/peerj.16822. PMC 10838079. PMID 38313009.
  79. ^ Hullot, M.; Martin, C.; Blondel, C.; Rössner, G. E. (2024). "Life in a Central European warm-temperate to subtropical open forest: Paleoecology of the rhinocerotids from Ulm-Westtangente (Aquitanian, Early Miocene, Germany)". The Science of Nature. 111 (1). 10. Bibcode:2024SciNa.111...10H. doi:10.1007/s00114-024-01893-w. PMID 38353735.
  80. ^ Li, S.; Sanisidro, O.; Wang, S.; Yang, R.; Deng, T. (2024). "New materials of Pliorhinus ringstroemi from the Linxia Basin (Late Miocene, eastern Asia) and their taxonomical and evolutionary implications". Journal of Mammalian Evolution. 31. 6. doi:10.1007/s10914-023-09698-w. S2CID 267352083.
  81. ^ Killingsworth, S. R.; MacFadden, B. J. (2024). "Species occurrences of Mio-Pliocene horses (Equidae) from Florida: sampling, ecology, or both?". Paleobiology: 1–12. doi:10.1017/pab.2023.35.
  82. ^ Deraco, V.; Abdala, F.; García-López, D. A. (2024). "Craniodental ontogenetic variation in the leontiniid Coquenia bondi Deraco, Powell, & López, 2008 (Notoungulata, Toxodontia) from the Eocene of Northwestern Argentina". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2024.2308221. S2CID 267509500.
  83. ^ Ferrero, B. S.; Schmidt, G. I.; Costamagna, D.; Miño-Boiliniv, Á. R.; Zurita, A. E.; Quiñones, S. I.; Cuadrelli, F.; Luna, C. A.; Solís, N.; Candela, A. M. (2024). "First record of Posnanskytherium (Notoungulata, Toxodontidae) in the late Neogene of eastern Puna, Argentina". Journal of Mammalian Evolution. 31. 5. doi:10.1007/s10914-023-09700-5. S2CID 267360848.
  84. ^ Luna, C. A.; Barbosa, F. H. S.; Gonzalez, R.; Miño-Boilini, Á. R.; Repetto, C.; Zurita, A. E. (2024). "Bone diseases in a Pleistocene South American native ungulate species: the case of Toxodon platensis Owen, 1837 (Mammalia, Notoungulata, Toxodontidae)". Journal of Quaternary Science. doi:10.1002/jqs.3601. S2CID 267555703.
  85. ^ Fernández-Monescillo, M.; Tauber, A. A. (2024). "Beyond extinction: Uncovering morphological aspects of the last typotherid population (Mesotherium cristatum) and the unexpected body mass decrease". Quaternary Science Reviews. 325. 108479. Bibcode:2024QSRv..32508479F. doi:10.1016/j.quascirev.2023.108479. S2CID 266730484.
  86. ^ Chahud, A.; Pereira, G. C.; Costa, P. R. O.; Okumura, M. (2024). "A new record of ground sloth in the Ribeira de Iguape valley, southeastern Brazil". Carnets Geol. 24 (4): 83–89. doi:10.2110/carnets.2024.2404.
  87. ^ Carneiro, L. M.; Zanesco Ferreira, T.; Bergqvist, L. P.; Goin, F. J.; Guedes, F. R.; Agnes, Á.; Oliveira, É. V. (2024). "New material of Carolocoutoia ferigoloi (Mammalia, Marsupialia, Didelphimorphia): Systematic affinities and dietary inferences". Journal of South American Earth Sciences. 134. 104777. Bibcode:2024JSAES.13404777C. doi:10.1016/j.jsames.2023.104777. S2CID 266729954.
  88. ^ Hu, Q.; Seymour, R. S.; Snelling, E. P.; Wells, R. T. (2024). "Blood flow rate to the femur of extinct kangaroos implies a higher locomotor intensity compared to living hopping macropods". Journal of Mammalian Evolution. 31. 2. doi:10.1007/s10914-023-09701-4.
  89. ^ Kerr, I. A. R.; Prideaux, G. J. (2024). "Re-evaluating the generic affinity of 'Silvaroo' buloloensis (Marsupialia, Macropodidae) from the late Pliocene of Papua New Guinea". Alcheringa: An Australasian Journal of Palaeontology: 1–17. doi:10.1080/03115518.2024.2319043.
  90. ^ Koungoulos, L. G.; Flannery, T. F.; O'Connor, S. (2024). "First record of Protemnodon (Macropodidae: Marsupialia) from Pleistocene lowland New Guinea". Alcheringa: An Australasian Journal of Palaeontology: 1–6. doi:10.1080/03115518.2024.2304340.
  91. ^ Bajpai, S.; Rautela, A.; Yadav, R.; Wilson Mantilla, G. P. (2024). "The first eutriconodontan mammal from the Cretaceous (Maastrichtian) of India". Journal of Vertebrate Paleontology. e2312234. doi:10.1080/02724634.2024.2312234.
  92. ^ Chimento, N. R.; Agnolín, F. L.; García-Marsà, J.; Manabe, M.; Tsuihiji, T.; Novas, F. E. (2024). "A large therian mammal from the Late Cretaceous of South America". Scientific Reports. 14 (1). 2854. Bibcode:2024NatSR..14.2854C. doi:10.1038/s41598-024-53156-3. PMC 10838296. PMID 38310138.
  93. ^ Ashbaugh, A. J.; Scott, C. S.; Wilson Mantilla, G. P.; Theodor, J. M. (2024). "Species discrimination in the multituberculate Mesodma Jepsen, 1940 (Mammalia, Allotheria): considerations of size, shape, and form". Journal of Paleontology. 97 (6): 1282–1292. doi:10.1017/jpa.2023.76.
  94. ^ Huang, E. J.; Wilson, J. D.; Bhullar, B.-A. S.; Bever, G. S. (2024). "High-precision body mass predictors for small mammals: a case study in the Mesozoic". Palaeontology. 67 (2). e12692. doi:10.1111/pala.12692.
  95. ^ Jones, M. E.; Travouillon, K.; Janis, C. M. (2024). "Proportional variation and scaling in the hindlimbs of hopping mammals, including convergent evolution in argygrolagids and jerboas". Journal of Mammalian Evolution. 31. 8. doi:10.1007/s10914-023-09699-9.
  96. ^ Iannucci, A. (2024). "Ecospace occupancy and disparity in Pleistocene large carnivorans of Europe and implications for hominin dispersal and ecological role". Quaternary Science Reviews. 329. 108562. doi:10.1016/j.quascirev.2024.108562.