This is a good article. Click here for more information.

Bovidae

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Bovidae
Temporal range: 20–0Ma Early Miocene - Recent
Family Bovidae six species.jpg
Images of a few members of the family Bovidae (clockwise from top left) - Sable antelope, sheep, zebu, Chinese goral, nyala and Maxwell's duiker.
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Clade: Ruminantiamorpha
Suborder: Ruminantia
Infraorder: Pecora
Family: Bovidae
Gray, 1821
Subfamilies

Aepycerotinae (one genus)
Alcelaphinae (one tribe and four genera)
Antilopinae (three tribes and 15 genera)
Bovinae (three tribes and ten genera)
Caprinae (three tribes and 13 genera)
Cephalophinae (three genera)
Hippotraginae (three genera)
Pantholopinae (one genus)
Peleinae (one genus)
Reduncinae (two genera)

The Bovidae are the biological family of cloven-hoofed, ruminant mammals that includes bison, African buffalo, water buffalo, antelopes, gazelles, sheep, goats, muskoxen, and domestic cattle. A member of this family is called a bovid. Consisting of 143 extant species and 300 known extinct species, the family Bovidae consists of eight major subfamilies apart from the disputed Peleinae and Pantholopinae. The family evolved 20 million years ago, in the early Miocene.

All bovids have the similar basic form - a snout with a blunt end, a pair of horns (generally present on males) immediately after the oval or pointed ears, a distinct neck and limbs, and a tail varying in length and bushiness among the species.The bovids show great variation in size and pelage colouration. Excepting some domesticated forms, all male bovids have horns, and in many species females possess horns too. The size and shape of the horns vary greatly, but the basic structure is always a pair of simple bony protrusions without branches, often having a spiral, twisted or fluted form, each covered in a permanent sheath of keratin. Most bovids bear 30 to 32 teeth.

Most bovids are diurnal. Social activity and feeding usually peaks during dawn and dusk. Bovids usually rest before dawn, during midday and after dark. They have various methods of social organization and social behaviour, which are classified into solitary and gregarious behaviour. Bovids use different forms of vocal, olfactory and tangible communication. Most species alternately feed and ruminate throughout the day. While small bovids forage in dense and closed habitat, larger species feed upon high-fiber vegetation in open grasslands. Most bovids are polygynous, and males become sexually mature much after the females do.All bovids mate at least once a year, and smaller species may even mate twice. Mating seasons occur during the rainy months. Gestational period is longer for bovids as compared to other mammalian families. Most newborn calves remain hidden for a week to two months, regularly nursed by their mothers.

Most of the diverse bovid species occur in Africa. The maximum concentration is in the savannas of eastern Africa. A few bovid species also occur in Europe, Asia and North America. The Bovidae include three of the five domesticated mammals whose use has spread outside their original ranges, namely the cow, sheep and goat. Dairy products such as milk, butter and cheese are manufactured largely from domestic cattle. Bovids also provide leather, meat and wool.

Etymology and taxonomy[edit]

Bovidae
Bovinae

Tragelaphini



Bovini




Antilopinae

Antilopini



Neotragini





Cephalophinae



Reduncinae




Aepycerotinae



Caprinae

Ovibovini



Caprini




Hippotraginae



Alcelaphinae





The name "Bovidae" was given by the British zoologist John Edward Gray in 1821.[1] The word "Bovidae" is the combination of the prefix bov- (originating from the New Latin word Bos, ox) and the suffix -idae.[2][3] Bovidae is a mammal family placed in the order Artiodactyla (which includes the even-toed ungulates). It includes 143 extant species, accounting for nearly 55% of the ungulates, and 300 extinct species.[4]

Molecular studies have supported monophyly in the family Bovidae (a monophyletic group of organisms comprises an ancestral species and their descendants).[5][6] The number of subfamilies in the Bovidae is disputed, with suggestions of as many as ten and as few as two subfamilies.[7] However, molecular, morphological and fossil evidence indicates the existence of eight distinct subfamilies : Aepycerotinae (consisting of only the impala), Alcelaphinae (bontebok, hartebeest, wildebeest and relatives), Antilopinae (several antelopes, gazelles and relatives), Bovinae(cattle, buffaloes, bison and other antelopes), Caprinae (goats, sheep, ibex, serows and relatives), Cephalophinae (duikers), Hippotraginae (addax, oryx and relatives) and Reduncinae (reedbuck and kob antelopes). In addition, there are three extinct subfamilies: Hypsodontinae (mid-Miocene), Oiocerinae (Turolian) and the subfamily of Tethytragus (mid-Miocene).[8][9]

In 1992, Alan W. Gentry of the Natural History Museum, London divided the eight major subfamilies of Bovidae into two major clades on the basis of their evolutionary history : the Boodontia, which comprised only the Bovinae; and the Aegodontia, which consisted of the rest of the subfamilies. Boodonts have somewhat primitive teeth, resembling those of oxen; whereas aegodonts have more advanced teeth like those of goats.[10]

There is a controversy about the recognition of Peleinae and Patholopinae, comprising the genera Pelea and Pantholops respectively, as subfamilies. In 2000, American biologist George Schaller and palaeontologist Elisabeth Vrba suggested the inclusion of Pelea in Reduncinae,[11] even though the grey rhebok, the sole species of Pelea, is highly different from the kobs and the reduncines in morphology.[12] Pantholops, earlier classified in Antilopinae, was later placed in its own subfamily Pantholopinae. However, molecular and morphological analysis supports the inclusion of Pantholops in Caprinae.[13]

Evolution[edit]

Skull of Eotragus sansaniensis, a species of the ancient bovid genus Eotragus

Early Miocene and before[edit]

In the early Miocene, bovids began diverging from the cervids (deer) and giraffids. The earliest bovids, whose presence in Africa and Eurasia in the latter part of early Miocene (20 Mya) has been ascertained, were small animals, somewhat similar to modern gazelles, and probably lived in woodland environments.[14] The Eotragus, the earliest known bovid, weighed 18 kg (40 lb) and was nearly the same in size as the Thompson's gazelle.[15] Early in their evolutionary history, the bovids split into two main clades: Boodontia and Aegodontia. This early split between Boodontia (of Eurasian origin) and Aegodontia (of African origin) has been attributed to the continental divide between these land masses. When these continents were later rejoined, this barrier was removed, and either group expanded into the other's territory.[7][16] The tribes Bovini and Tragelaphini diverged in the early Miocene.[17] Bovids are known to have reached the Americas in the Pleistocene by crossing the Bering land bridge.[15]

The present genera of Alcelaphinae appeared in the Pliocene. The extinct Alcelaphine genus Paramularius, that was the same in size as the hartebeest, is believed to have come into being in the Pliocene, but went extinct in the middle Pleistocene.[6] Several genera of Hippotraginae are known since the Pliocene and Pleistocene. This subfamily seems to have diverged from Alcelaphinae in the latter part of early Miocene.[17] The Bovinae is believed to have diverged from the rest of the Bovidae in the late Oligocene.[17] The Boselaphini became extinct in Africa in the early Pliocene, and their latest fossils were excavated in Langebaanweg (South Africa) and Lothagam (Kenya).[18]

Middle Miocene[edit]

The middle Miocene marked the spread of the bovids into China and the Indian subcontinent.[15] According to Vrba, the radiation of the subfamily Alcelaphinae began in the latter part of middle Miocene.[6] The Caprinae tribes probably diverged in the early middle Miocene. Caprini emerged in the middle Miocene, and seems to have been replaced by other bovids and cervids in Eurasia.[19] The earliest fossils of the Antilopines are from the middle Miocene, though studies show the existence of the subfamily from the early Miocene. Speciation occurred in the tribe Antilopini during the middle or upper Miocene, mainly in Eurasia. Tribe Neotragini seems to have appeared in Africa by the end of Miocene, and had become widespread by the Pliocene.[17]

Late Miocene[edit]

By the late Miocene, around 10 Mya, the bovids rapidly diversified, leading to the creation of 70 new genera.[15] This late Miocene radiation was partly because many bovids became adapted to more open, grassland habitat.[14] Aepycerotinae first appeared in the late Miocene, and no significant difference in the sizes of the primitive and modern impala has been noted.[20] Fossils of Obivines, a tribe of Caprinae, in Africa date back to the late Miocene.[17] The earliest Hippotragine fossils date back to the late Miocene, and were excavated from sites like Lothagam and Awash Valley.[17] The first African fossils of the Reduncinae date back to 6-7 Mya.[21] Reduncinae and Peleinae probably diverged in the mid-Miocene.[6]

Characteristics[edit]

Bovids display unique unbranched horns.

All bovids have the similar basic form - a snout with a blunt end, a pair of horns (generally present on males) immediately after the oval or pointed ears, a distinct neck and limbs, and a tail varying in length and bushiness among the species.[22] Most bovids exhibit sexual dimorphism, with males usually larger as well as heavier than females. Sexual dimorphism is more prominent in medium to large-sized bovids. All bovids have four toes on each foot – they walk on the central two (the hooves), while the outer two (the dew-claws) are much smaller and rarely touch the ground.[4]

The bovids show great variation in size. On the one hand, the gaur can weigh as heavy as one tonne (1,000 kg (2,200 lb)) and stands 2–3 m (6.6–9.8 ft) high at the shoulder.[23] The water buffalo can be even heavier, and weigh 1,200 kg (2,600 lb); though it is shorter than the gaur, being at most 2 m (6.6 ft).[24] On the other hand, the royal antelope is only 25 cm (9.8 in) tall and weighs at most 3 kg (6.6 lb).[25] The klipspringer is another small antelope, that stands 45–60 cm (18–24 in) at the shoulder and weighs just 10–20 kg (22–44 lb).[26]

There are differences in pelage colouration as well, the colour ranging from a pale white (as in the Arabian oryx) to black (as in the black wildebeest). However, only the intermediate shades, such as brown and reddish brown (as in the reedbuck), are commonly observed.[27] In several species, females and juveniles exhibit a light-coloured coat, while that of males darkens with age. As in the wildebeest, the coat may be marked with prominent or faint stripes. In some species such as the addax, the coat colour can vary with the season.[28] Scent glands and sebaceous glands are often present.[22]

Excepting some domesticated forms, all male bovids have horns, and in many species females too possess horns. The size and shape of the horns vary greatly, but the basic structure is always a pair of simple bony protrusions without branches, often having a spiral, twisted or fluted form, each covered in a permanent sheath of keratin. The unique horn structure is the only unambiguous morphological feature of bovids that distinguish them from other pecorans.[29][30] A study revealed that there was a high correlation between horn morphology and fighting behaviour of the individual. For instance, long horns are intended for wrestling and fencing, whereas curved horns are used in ramming.[31] Another study found that males with horns directed inwards are monogamous and solitary; whereas those with horns directed outwards tend to be polygynous. These results were independent of the body size.[32]

Male horn development has been linked to sexual selection,[33][34] Horns are small spikes in the monogamous duikers and other small antelopes, whereas in the polygynous they are large and elaborately formed (for example in a spiral structure, as in the giant eland). Thus, to some extent, horns depict the degree of competition among males in a species.[27] On the other hand, the presence of horns in females is likely due to natural selection.[33][35] The horns of females are usually smaller than those of males, and are sometimes of a different shape. The horns of female bovids are thought to have evolved for defense against predators or to express territoriality, as non-territorial females, which are able to use crypsis for predator defense, often do not have horns.[35] A study revealed that females possess horns only in half of the bovid genera, and females in these genera are heavier than those in the rest. Females use horns mainly for stabbing.[36]

Anatomy[edit]

Dental pad of a domestic bovid. Note the absence of upper incisors and canines and the outward projection of the lower teeth.

In bovids, the third and fourth metapodials are combined into the cannon bone. The ulna and fibula are reduced, and fused with the radius and tibia respectively. Long scapulae are present, whereas the clavicles are absent. Being ruminants, the stomach is composed of four chambers :the rumen (80%), the omasum, the reticulum and the abomasum. The ciliates and bacteria of the rumen ferment the complex cellulose into simpler fatty acids, which are then absorbed through the rumen wall. Bovids have a long small intestine; the length of the small intestine in cattle is 29–49 m (95–161 ft). Body temperature keeps fluctuating through the day; for instance, in goats the temperature can change slightly from nearly 37 °C (99 °F; 310 K) in the early morning to 40 °C (104 °F; 313 K) in the afternoon. Temperature is regulated through sweating in cattle, whereas goats use panting for the same. The right lung, consisting of four to five lobes, is around 1.5 times larger than the left, which has three lobes.[4][22]

Dentition[edit]

Most bovids bear 30 to 32 teeth.[27] While the upper incisors are absent, the upper canines are either reduced or absent. Instead of the upper incisors, bovids have a thick and tough layer of tissue called the dental pad, that provides a surface to grip grasses and foliage. They are hypsodont and selenodont, since the molars and premolars are low-crowned and crescent-shaped cusps. The lower incisors and canines project forward. The incisors are followed by a long toothless gap, known as the diastema.[37] The general dental formula for bovids is 0.0.2-3.33.1.3.3. Most members of the family are herbivorous, however, most duikers are omnivorous. Like other ruminants, bovids have four-chambered stomachs, which allow them to digest plant material, such as grass, that cannot be used by many other animals. Ruminants (and some others like kangaroos, rabbits and termites) are able to use micro-organisms living in their guts to break down cellulose by fermentation.[4]

Ecology and behaviour[edit]

Blackbuck antelope herd

The bovids have various methods of social organization and social behaviour, which are classified into solitary and gregarious behaviour. Further, these types may each be divided into territorial and non-territorial behaviour.[27] Small bovids such as the klipspringer, oribi, steenbok are generally solitary and territorial. They hold small territories into which other members of the species, are not allowed to enter. These antelopes form monogamous pairs. Many species such as the dik-dik use pheromone secretions from the preorbital glands and sometimes dung as well to mark their territories.[38] The offspring disperse at the time of adolescence, and males need to acquire territories prior to mating.[4] The bushbuck is the only bovid that is both solitary and non-territorial. This antelope hardly displays aggression, and tends to isolate itself or form loose herds, though in a favourable habitat several bushbuck may be found quite close to one another.[39]

Excluding the Cephalophines (duikers), Tragelaphines (spiral-horned antelopes) and the Neotragines, most African bovids are gregarious and territorial. Males are forced to disperse on attaining sexual maturity, and have to form their own territories, while females are not required to do so. Males that do not hold territories form bachelor herds. Competition takes place among males to acquire dominance, and fights tend to be more rigorous in limited rutting seasons. With the exception of migratory males, males generally hold the same territory throughout their lives.[27] In the waterbuck, some male individuals, known as "satellite males", may be allowed into the territories of other males and have to wait till the owner grows old so that they may acquire his territory.[40] Lek mating, where males gather together and competitively display to potential mates, is known to exist among topis, kobs and lechwes.[41] The Tragelaphines, cattle, sheep and goats are gregarious and non-territorial. In these species, males must gain absolute dominance over all other males, and fights are not confined to territories. Males therefore spend years in body growth.[27]

Activity[edit]

Two Speke's gazelles boxing with horns

Most bovids are diurnal, although a few such as the buffalo, bushbuck, reedbuck and grysbok are exceptions. Social activity and feeding usually peaks during dawn and dusk. The bovids usually rest before dawn, during midday and after dark. Grooming is usually by licking with the tongue. Rarely do antelopes roll in mud or dust. Wildebeest and buffalo usually wallow in mud, whereas the hartebeest and topi rub their head and horns in mud and then smear it over their body. Bovids use different forms of vocal, olfactory and tangible communication. These involve varied postures of neck, head, horns, hair, legs and ears to convey sexual excitement, emotional state or alarm. One such expression is the flehmen response. Bovids usually stand motionless, with the head high and an intent stare, when they sense danger. Some like the impala, kudu and eland can even leap to heights of a few feet.[27] Bovids may roar or grunt to caution others and warn off predators, which include lion, tiger, grizzly bear, brown bear, crocodile, dhole, Komodo dragon, spotted hyena and cougar.[4] In the mating season, rutting males might bellow to make their presence known to females. Muskox roar during male-male fights, and male saiga force air through their noses, producing a roar to deter rival males and attract females. Mothers also use vocal communication to locate their calves if they get separated. During fights over dominance, males tend to display themselves in an erect posture with a level muzzle.[42][43]

Fighting techniques differ amongst the bovid families and also depend on the build. While the hartebeest fight on knees, others usually fight on all fours. Gazelles of various sizes use different methods of combat. Gazelles usually box, and in serious fights may clash and fence, consisting of hard blows from short range. Ibex and goat ram into opponents and clash horns. Wildebeest may use powerful head butting in aggressive clashes. If horns become entangled, the opponents move in a circular manner to unlock them. As a rule, only two bovids of equal build and level of defense engage in a fight, which is intended to determine the superior of the two. Individuals that are evidently inferior to others would rather flee than fight; for example, the immature males would not fight with the mature bulls. Generally bovids direct their attacks on the opponent's head rather than its body. The S-shaped horns, such as those on the impala, have various sections that help in ramming, holding and stabbing. Serious and gory fights are rare.[27][42][44]

Diet[edit]

Bovids are herbivores, feeding on grass, foliage and plant products.

Most bovids alternately feed and ruminate throughout the day. While those who feed on concentrates feed and digest in short intervals, the roughage feeders take longer intervals. Only small species such as the duiker browse for a few hours during day or night.[27] Feeding habits are related with body size; while small bovids forage in dense and closed habitat, larger species feed upon high-fiber vegetation in open grasslands. Subfamilies exhibit different feeding strategies. While Bovinae species graze extensively on fresh grass and plenty of diffused forage, Cephalophinae species (with the exception of Sylvicapra) primarily consume fruits.[4] Reduncinae and Hippotraginae species depend on unstable food sources, but the latter is specially adapted to arid areas. Members of Caprinae, being flexible feeders, forage even in areas with low productivity. Tribes Alcelaphini, Hippotragini, and Reduncini have high proportions of monocots in their diets. On the contrary, Tragelaphini and Neotragini (with the exception of Ourebia) feed extensively on dicots.[45] A study has shown that there is no conspicuous relationship between body size and consumption of monocots.[46]

Sexuality and reproduction[edit]

Juvenile sheep near its mother

Most bovids are polygynous, and males become sexually mature much after the females do. For instance, the blue wildbeest females become capable of reproduction within a year or two of birth, while the males become mature only when four-year-old. The delay in male sexual maturation is more visible in sexually dimorphic species, probably due to competition among males.[4] In a few species individuals are monogamous, resulting in minimal male-male aggression and reduced selection for large body size in males. Thus sexual dimorphism is almost absent. Females may be slightly larger than males, possibly due to competition among females for the acquisition of territories. This is the case in duikers and other small bovids.[47][48]

All bovids mate at least once a year, and smaller species may even mate twice. Mating seasons occur during the rainy months. As such, breeding might peak twice in the equatorial regions. Estrus lasts for at most a day in bovids, with the exception of Bovines and Tragelaphines. Except the hartebeest and the topi, all bovids can detect estrus in females by testing the urine using the vomeronasal organ.[27] Once the male is assured that the female is in estrus, he begins courtship displays; these displays vary greatly from the elaborate marches among gregarious species to the fervent licking of female genitalia among solitary species. Females, initially not receptive, ultimately mates with the male which has achieved dominance over others. Receptiveness is expressed by permission for mounting by the male and setting aside the tail by the female. Copulation takes a few seconds.[27][47]

Gestational period varies among bovids - while duiker gestation ranges from 120 to 150 days, gestation in African buffalo ranges from 300 to 330 days. This period is longer for bovids as compared to other mammalian families. Usually a single offspring is born (twins are rare), and it is able to stand and run by itself within an hour of birth. In monogamous species, males assist in defending their young, but this is not the case in polygynous species. Most newborn calves remain hidden for a week to two months, regularly nursed by their mothers. Different bovids have different strategies for defense of juveniles. For instance, while wildebeest mothers solely defend their young, buffaloes exhibit collective defense. Weaning might occur as early as two months (as in royal antelope) or as late as a year (as in muskox).[47][48]

Lifespan[edit]

Most wild bovids live for 10 to 15 years. Larger species tend to live longer; for instance, American bison can live for up to 25 years and gaur up to 30 years. The mean lifespan of domesticated individuals is nearly ten years. For example, domesticated goats have an average lifespan of 12 years. Most wild bovids live between 10 and 15 years, with larger species tending to live longer. For instance, American bison can live for up to 25 years and gaur up to 30 years.[4] Usually males, mainly in polygynous species, have shorter lifespan than females. This can be attributed to several reasons: early dispersal of young males, aggressive male-male fights, vulnerability to predation (particularly when males are less agile, as in kudu) and malnutrition (being large in size, the male body has high nutritional requirements which may not be satisfied).[49][50] Richard Despard Estes suggested that females mimic male secondary sexual characteristics like horns to protect their male offspring from dominant males. This feature seems to have been strongly selected to prevent male mortality and imbalanced sex ratios due to attacks by aggressive males and forced dispersal of young males during adolescence.[31]

Distribution[edit]

Eland occur in grasslands of Africa.

Most of the diverse bovid species occur in Africa. The maximum concentration is in the savannas of eastern Africa. Depending on their feeding habits, several species have radiated over large stretches of land, and hence several variations in dental and limb morphology is observed. Duikers inhabit the equatorial rainforests, sitatunga and lechwe occur near swamps, eland inhabit grasslands, springbok and oryx occur in deserts, bongo and anoa live in dense forests, mountain goats and takin live at high altitudes.[27] A few bovid species also occur in Europe, Asia and North America. Only two tribes of Bovidae - Antilopini and Hippotragini - are found outside the African continent. Sheep and goats are found primarily in Eurasia, though the Barbary sheep and the ibex form part of the African fauna. The muskox is confined to the arctic tundra. Several bovid species have been domesticated by human beings. The domestication of goat and sheep began 10 thousand years ago, while cattle were domesticated since about 7.5 thousand years ago.[4][47]

Interaction with humans[edit]

Domesticated animals[edit]

Further information: Domestication
Zebu oxen in Mumbai, India.

The domestication of bovids has contributed in shifting the dependence of human beings from hunting and gathering to agriculture. The Bovidae include three of the five domesticated mammals whose use has spread outside their original ranges, namely the cow, sheep and goat; all are from Eurasia. The other two species are the horse and pig. Other large bovids that have been domesticated within the ranges of their wild ancestors are the domestic buffalo (from the Indian water buffalo), yak, zebu (from the gaur or Indian aurochs) and Bali cattle (from the banteng).[47] Earliest evidence of cattle domestication dates back to 8000 B.C., suggesting domestication had emerged from Cyprus and the Euphrates basin.[51]

Animal products[edit]

Merino wool is the most valued, with great fineness and softness.

Dairy products such as milk, butter and cheese are manufactured largely from domestic cattle, though the milk of sheep, goat, yak and buffalo is also used in some parts of the world and for gourmet products. For example, buffalo milk is used to make mozzarella in Italy and gulab jamun dessert in India,[52] while sheep milk is used to make blue Roquefort cheese in France.[53] Beef is an excellent source of zinc, selenium, phosphorus, iron and B vitamins.[54] Bison meat is lower in fat and cholesterol than beef, but has a higher protein content.[55]

Bovid leather is tough and durable, with the additional advantage that it can be made into leathers of varying thicknesses - from soft clothing leather to hard shoe leather. While goat and cattle leather have a wide variety of use, sheepskin is suited only for clothing purposes.[56] Wool from Merino hoggets is the finest and most valuable. Merino wool is 3–5 in (7.6–12.7 cm) long and very soft. Coarse wools, being durable and resistant to pilling, are used for making tough garments.[57]

Bone meal is an important fertilizer rich in calcium, phosphorus and nitrogen, effective in removing soil acidity.[58] Bovid horns are also used as drinking vessels since antiquity.[59]

In human culture[edit]

Bovidae have featured in stories since at least the time of Aesop's fables from Ancient Greece around 600 BC. Fables by Aesop include The Crow and the Sheep, The Frog and the Ox and The Wolf and the Lamb.[60] The mythological creature Chimera, depicted as a lion, with the head of a goat arising from its back, and a tail that might end with a snake's head, was one of the offspring of Typhon and Echidna and a sibling of such monsters as Cerberus and the Lernaean Hydra.[61] Sheep, which is synonymous to the goat in Chinese mythology, is the eighth animal of the Chinese zodiac, and a symbol of filial piety.[62]

Classification[edit]

FAMILY BOVIDAE

Subfamily Aepycerotinae[edit]

Impala (Aepyceros melampus)
    • Genus Aepyceros

Subfamily Alcelaphinae[edit]

Tribe Alcelaphini

Subfamily Antilopinae[edit]

Springbok (Antidorcas marsupialis)

Subfamily Bovinae[edit]

Four-horned antelope (Tetracerus quadricornis)

Subfamily Caprinae[edit]

Domestic sheep (Ovis aries)

Subfamily Cephalophinae[edit]

Bay duiker (Cephalophus dorsalis)

Subfamily Hippotraginae[edit]

Roan antelope (Hippotragus equinus)

Subfamily Pantholopinae[edit]

    • Genus Pantholops (also classified under Caprinae)

Subfamily Peleinae[edit]

    • Genus Pelea (also classified under Reduncinae)

Subfamily Reduncinae[edit]

References[edit]

  1. ^ Grubb, P. (2005). "Family Bovidae". In Wilson, D. E.; Reeder, D. M. Mammal Species of the World (3rd ed.). Johns Hopkins University Press. pp. 637–722. ISBN 978-0-8018-8221-0. OCLC 62265494. 
  2. ^ "Bovidae". Merriam-Webster online dictionary. Retrieved 7 October 2014. 
  3. ^ Roberts, E. A. (2014). A Comprehensive Etymological Dictionary of the Spanish Language with Families of Words based on Indo-European Roots (Volume 1:A-G). United States of America: Xlibris Corporation. p. 260. ISBN 978-1-4931-9109-3. 
  4. ^ a b c d e f g h i j Gomez, W.; Patterson, T. A.; Swinton, J.; Berini, J. "Bovidae: antelopes, cattle, gazelles, goats, sheep, and relatives". Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved 7 October 2014. 
  5. ^ Gatesy, J.; Amato, G.; Vrba, E.; Schaller, G. "A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae". Molecular Phylogenetics and Evolution 7 (3): 303–19. doi:10.1006/mpev.1997.0402. 
  6. ^ a b c d Fernández, M. H.; Vrba, E. S. (2005). "A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants". Biological Reviews 80 (2): 269–302. doi:10.1017/S1464793104006670. 
  7. ^ a b Huffman, B. "Family Bovidae: Cattles, Antelopes and Goats". Ultimate Ungulate. Retrieved 7 October 2014. 
  8. ^ Harrison, T. (2011). Paleontology and Geology of Laetoli Human Evolution in Context. Dordrecht: Springer. pp. 363–465. ISBN 978-9048-199-624. 
  9. ^ Demiguel, D.; Sánchez, I. M.; Alba, D. M.; Galindo, J.; Robles, J. M.; Moyà-Solà, S. "First evidence of Azanza and Morales, 1994 (Ruminantia, Bovidae), in the Miocene of the Vallès-Penedès Basin (Spain)". Journal of Vertebrate Paleontology 32 (6): 1457–62. doi:10.1080/02724634.2012.696082. 
  10. ^ Harrison, T. (1997). Neogene Paleontology of the Manonga Valley, Tanzania : A Window into the Evolutionary History of East Africa. New York: Plenum Press. p. 113. ISBN 0-306-45471-8. 
  11. ^ Vrba, E. S.; Schaller, G. (2000). Antelopes, Deer, and Relatives : Fossil Record, Behavioral Ecology, Systematics, and Conservation. New Haven: Yale University Press. ISBN 978-0300-081-428. 
  12. ^ Grubb, P. (2005). "Order Artiodactyla". In Wilson, D. E.; Reeder, D. M. Mammal Species of the World (3rd ed.). Johns Hopkins University Press. p. 719. ISBN 978-0-8018-8221-0. OCLC 62265494. 
  13. ^ Grubb, P. (2005). "Order Artiodactyla". In Wilson, D. E.; Reeder, D. M. Mammal Species of the World (3rd ed.). Johns Hopkins University Press. p. 699. ISBN 978-0-8018-8221-0. OCLC 62265494. 
  14. ^ a b Savage, R.J.G.; Long, M.R. (1986). Mammal Evolution: an illustrated guide. New York: Facts on File. pp. 232–5. ISBN 0-8160-1194-X. 
  15. ^ a b c d Prothero, D. R.; Schoch, R. M. (2002). Horns, Tusks, and Flippers : the Evolution of Hoofed Mammals. Baltimore: Johns Hopkins University Press. pp. 87–90. ISBN 0-8018-7135-2. 
  16. ^ Hassanin, D.; Douzery, E.J. (1999). "The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene" (PDF). Molecular Phylogenetics and Evolution 26 (2): 227–43. doi:10.1006/mpev.1999.0619. PMID 10603253. 
  17. ^ a b c d e f Gilbert, W. H.; Asfaw, B. (2008). Homo Erectus : Pleistocene Evidence from the Middle Awash, Ethiopia. Berkeley: University of California Press. pp. 45–84. ISBN 978-0-520-25120-5. 
  18. ^ Geraads, D.; El Boughabi, S.; Zouhri, S. (2012). "A new caprin bovid (Mammalia) from the late Miocene of Morocco". Palaeontologica Africana (47): 19–24. ISSN 0078-8554. 
  19. ^ Kingdon, J. (1989). East African Mammals : An Atlas of Evolution in Africa (Volume III, Part C). Chicago: University of Chicago press. pp. 1–33. ISBN 0-226-43724-8. 
  20. ^ Stanley, S. M.; Eldredge, N. (1984). "Evolutionary Pattern and Process in the Sister-Group Alcelaphini-Aepycerotini (Mammalia: Bovidae)". Living Fossils. Springer. pp. 62–79. ISBN 978-1461-382-737. 
  21. ^ Vrba, E. S.; Burckle, L. H.; Partridge, T. C.; Denton, G. H. (1995). Paleoclimate and Evolution, with Emphasis on Human Origins. New Haven: Yale University Press. pp. 24–5. ISBN 978-0300-063-486. 
  22. ^ a b c Walton, D.W. (1989). Fauna of Australia (Volume 1B). Canberra: Australian Government Publication Service. pp. 1–14. ISBN 978-0644-060-561. 
  23. ^ Lundrigan, B.; Zachariah, T. "Bos frontalis, Gaur". Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved 8 October 2014. 
  24. ^ Roth, J. "Bubalus bubalis, Water buffalo". Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved 8 October 2014. 
  25. ^ Huffman, B. "Royal antelope". Ultimate Ungulate. Retrieved 8 October 2014. 
  26. ^ Hildyard, A. (2001). Endangered Wildlife and Plants of the World. New York: Marshall Cavendish. pp. 769–70. ISBN 0-7614-7200-2. 
  27. ^ a b c d e f g h i j k l Estes, R. D. (2004). The Behavior Guide to African Mammals : Including Hoofed Mammals, Carnivores, Primates (4th ed.). Berkeley: University of California Press. pp. 7–25. ISBN 0-520-08085-8. 
  28. ^ Krausman, P.R. & Casey, A.L. (2012). "Addax nasomaculatus". Mammalian Species: Number 807: pp. 1–4. doi:10.1644/807.1. 
  29. ^ Bibi, F.; Bukhsianidze, M.; Gentry, A.; Geraads, D.; Kostopoulos, D.; Vrba, E. (2009). "The fossil record and evolution of Bovidae: state of the field". Paleontologia Electronica 12 (3): 10A. 
  30. ^ Gatesy, J.; Yelon, D.; DeSalle, R.; Vrba, E. (1992). "Phylogeny of the Bovidae (Artiodactyla, Mammalia), based on mitochondrial ribosomal DNA sequences". Molecular Biology and Evolution 9 (3): 433–446. PMID 1584013. 
  31. ^ a b Lundrigan, B. "Morphology of horns and fighting behavior in the family Bovidae". Journal of Mammalogy 77 (2): 462–75. doi:10.2307/1382822. 
  32. ^ Caro, T. M.; Graham, C. M.; Stoner, C. J.; Flores, M. M. (2003). "Correlates of horn and antler shape in bovids and cervids". Behavioral Ecology and Sociobiology 55 (1): 32–41. doi:10.1007/s00265-003-0672-6. 
  33. ^ a b Bro-Jørgensen, J. (2007). "The intensity of sexual selection predicts weapon size in male bovids". Evolution 61 (6): 1316–1326. doi:10.1111/j.1558-5646.2007.00111.x. PMID 17542842. 
  34. ^ Ezenwa, V.; J., A. (2008). "Horns honestly advertise parasite infection in male and female African buffalo". Animal Behaviour 75 (6): 2013–2021. doi:10.1016/j.anbehav.2007.12.013. 
  35. ^ a b Stankowich, T.; Caro, T. (2009). "Evolution of weaponry in female bovids". Proceedings of the Royal Society B: Biological Sciences 276 (1677): 4329–4334. doi:10.1098/rspb.2009.1256. PMC 2817105. PMID 19759035. 
  36. ^ Packer, C. (1983). "Sexual Dimorphism: The Horns of African Antelopes". Science 221 (4616): 1191–3. doi:10.1126/science.221.4616.1191. 
  37. ^ Janis, C. & Jarman, P. (1984). Macdonald, D., ed. The Encyclopedia of Mammals. New York: Facts on File. pp. 498–9. ISBN 0-87196-871-1. 
  38. ^ Wyatt, T. D. (2003). Pheromones and Animal Behaviour : Communication by Smell and Taste. Cambridge: Cambridge University Press. p. 97. ISBN 0-521-48526-6. 
  39. ^ Ciszek, D. "Bushbuck". Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved 28 October 2014. 
  40. ^ T. L., Newell. "Waterbuck". Animal Diversity Web. University of Michigan Museum of Zoology. Retrieved 28 October 2014. 
  41. ^ Lott, Dale F. (1991). Intraspecific Variation in the Social Systems of Wild Vertebrates. Cambridge University Press. p. 37. ISBN 978-0521370240. 
  42. ^ a b Parker, S.P. (1990). Grzimek's Encyclopedia of Mammals (Volume 5) (1st ed.). New York: McGraw-Hill Publishing Company. pp. 288–324, 338–9, 354–5, 432–3, 444–5, 460–1, 482–3. ISBN 9780079095084. 
  43. ^ Czaplewski, N. J.; Ryan, J. M.; Vaughan, T. A. (2011). Mammalogy (5th ed.). Sudbury: Jones and Bartlett Publishers. ISBN 9780763762995. 
  44. ^ Post, E.; Forchhammer, M. C (July 2008). "Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch". Philosophical Transactions of the Royal Society B: Biological Sciences 363 (1501): 2367–2373. doi:10.1098/rstb.2007.2207. 
  45. ^ Gagnon, M.; Chew, A.E. (May 2000). "Dietary preferences in extant African Bovidae". Journal of Mammalogy 81 (2): 490–511. doi:10.1644/1545-1542(2000)081<0490:DPIEAB>2.0.CO;2. 
  46. ^ Sponheimer, M.; Lee-Thorp, J.A.; DeRuiter, D.J.; Smith, J.M.; van der Merwe, N.J.; Reed, K.; Grant, C.C.; Ayliffe, L.K.; Robinson, T.F. (2003). "Diets of Southern African Bovidae: Stable Isotope Evidence". Journal of Mammalogy 84 (2): 471–9. doi:10.1644/1545-1542(2003)084<0471:DOSABS>2.0.CO;2. 
  47. ^ a b c d e Feldhamer, George A.; Drickamer, Lee C.; Vessey, Stephen H.; Merritt, Joseph F.; Krajewski, Carey (2007). Mammalogy: Adaptation, Diversity, Ecology. Johns Hopkins University Press. pp. 519–522. ISBN 0-8018-8695-3. 
  48. ^ a b Krebs, J.R.; Davies, N.B. (1997). Behavioural Ecology: An Evolutionary Approach (4th ed.). Wiley-Blackwell. ISBN 9780865427310. 
  49. ^ Owen-Smith, N. (1993). "Comparative mortality rates of male and female kudus: the costs of sexual size dimorphism". Journal of Animal Ecology 62 (3): 428–40. doi:10.2307/5192. 
  50. ^ Toigo, C.; Gaillard, J.M. (2003). "Causes of Sex-Biased Adult Survival in Ungulates: Sexual Size Dimorphism, Mating Tactic or Environment Harshness?". Oikos 101 (2): 376–84. 
  51. ^ Zeder, M. A. (2006). Documenting Domestication : New Genetic and Archaeological Paradigms. Berkeley, California: University of California Press. p. 317. ISBN 0520246381. 
  52. ^ Phelan, Benjamin; Phelan, Benjamin (24 July 2013). "Others' Milk". Slate.com. Retrieved 10 October 2014. 
  53. ^ Hughes, Tom; Hughes, Meredith Sayles (2005). Gastronomie!: Food Museums and Heritage Sites of France. Bunker Hill Publishing. p. 19. ISBN 1-59373-029-2. 
  54. ^ "Beef, lean organic". WHFoods. 18 October 2004. Retrieved 1 April 2015. 
  55. ^ "| National Bison Association". Bisoncentral.com. Archived from the original on January 20, 2011. Retrieved 1 April 2015. 
  56. ^ Veldmeijer, A. J.; Harris, S. (2014). Why Leather?: The Material and Cultural Dimensions of Leather. Sidestone Press. pp. 31–6. ISBN 9789088902611. 
  57. ^ "Merino Sheep in Australia". Archived from the original on 2006-11-05. Retrieved 1 April 2015. 
  58. ^ Kolay, A. K. (2007). Manures and fertilizers. New Delhi: Atlantic Publications. p. 98. ISBN 8126908106. 
  59. ^ Vi, E. (1975). "Germanic glass drinking horns". Journal of Glass Studies 17: 74–87. 
  60. ^ "Aesop's Fables". Aesop's Fables. Retrieved 10 October 2014. 
  61. ^ Peck. "Entry:Chimaera". Retrieved 31 March 2015. 
  62. ^ Eberhard, W.. A Dictionary of Chinese Symbols: Hidden Symbols in Chinese Life and Thought. London: Routledge. ISBN 0-415-00228-1. 

External links[edit]