Zona limitans intrathalamica: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Citation bot (talk | contribs)
m Citation maintenance. Added: doi, pmid. Formatted: pages. You can use this bot yourself! Please report any bugs.
Line 1: Line 1:
The '''zona limitans intrathalamica''' (ZLI) is a [[compartment (development)|lineage-restriction compartment]] and primary developmental boundary in the [[vertebrate]] [[forebrain]] (which is analogous to the human [[cerebrum]]) that serves as a signaling center and a restrictive border between the [[thalamus]] (also known as the dorsal thalamus) and the [[prethalamus]] (ventral thalamus). ''[[Sonic hedgehog]]'' (''shh'') signaling from the ZLI is crucial in the development of the [[diencephalon]], which develops into the [[thalamus]], the [[pretectum]], and the [[ventral tegmentum|anterior tegmental]] structures <ref name=Garcia-Lopez>{{cite journal |author=Garcia-Lopez R, Vieira C, Echevarria D, Martinez S |title=Fate map of the diencephalon and the zona limitans at 10-somites stage in chick embryos |journal=Developmental Biology |volume=268 |pages=514-530 |year=2004}}</ref>. The ZLI together with the prethalamus and thalamus make up the mid-diencephalic territory (MDT) <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167-3176 |year=2007}}</ref>.
The '''zona limitans intrathalamica''' (ZLI) is a [[compartment (development)|lineage-restriction compartment]] and primary developmental boundary in the [[vertebrate]] [[forebrain]] (which is analogous to the human [[cerebrum]]) that serves as a signaling center and a restrictive border between the [[thalamus]] (also known as the dorsal thalamus) and the [[prethalamus]] (ventral thalamus). ''[[Sonic hedgehog]]'' (''shh'') signaling from the ZLI is crucial in the development of the [[diencephalon]], which develops into the [[thalamus]], the [[pretectum]], and the [[ventral tegmentum|anterior tegmental]] structures <ref name=Garcia-Lopez>{{cite journal |author=Garcia-Lopez R, Vieira C, Echevarria D, Martinez S |title=Fate map of the diencephalon and the zona limitans at 10-somites stage in chick embryos |journal=Developmental Biology |volume=268 |pages=514–530 |year=2004 |doi=10.1016/j.ydbio.2003.12.038}}</ref>. The ZLI together with the prethalamus and thalamus make up the mid-diencephalic territory (MDT) <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167–3176 |year=2007 |doi=10.1242/dev.001461 |pmid=17670791}}</ref>.
[[Image:Labeled cichlid forebrain diagram with shh expression.jpg|thumb|Forebrain structures in the fish at 3-4 days (with pretectum from midbrain for better depiction of boundaries), with ''shh'' expression in red; [[Anatomical terms of location|rostral]] extension between the [[prethalamus]] and [[thalamus]] depicts the ZLI.]]
[[Image:Labeled cichlid forebrain diagram with shh expression.jpg|thumb|Forebrain structures in the fish at 3-4 days (with pretectum from midbrain for better depiction of boundaries), with ''shh'' expression in red; [[Anatomical terms of location|rostral]] extension between the [[prethalamus]] and [[thalamus]] depicts the ZLI.]]
==Discovery==
==Discovery==
Cell lineage restriction boundaries, across which replicating cells cannot migrate, were first discovered in [[invertebrate]]s, where the expression of various [[Hox]] genes in each compartment confer the [[differentiation]] of observable segments in the adult body of [[Drosophila melanogaster]]. Analogous structures were discovered in the developing [[vertebrate]] [[brain]]. [[Rhombomere]]s, which extend down the [[embryo]] from the [[hindbrain]], contain clear [[compartment (development)|boundaries]] and each express various [[Hox]] genes that are necessary for [[cellular differentiation|differentiation]] of structures within the body. More [[anterior]] regions of the [[brain]] were examined in search of other cell lineage restriction boundaries, and multiple potential [[compartment (development)|boundaries]] continue to be studied (see Developmental Boundaries) <ref name= Kiecker>{{cite journal |author= Kiecker C, Lumsden A |title=Compartments and their boundaries in vertebrate brain development |journal=Nature Reviews: Neuroscience |volume=6 |pages=553-564 |year=2005}}</ref>.
Cell lineage restriction boundaries, across which replicating cells cannot migrate, were first discovered in [[invertebrate]]s, where the expression of various [[Hox]] genes in each compartment confer the [[differentiation]] of observable segments in the adult body of [[Drosophila melanogaster]]. Analogous structures were discovered in the developing [[vertebrate]] [[brain]]. [[Rhombomere]]s, which extend down the [[embryo]] from the [[hindbrain]], contain clear [[compartment (development)|boundaries]] and each express various [[Hox]] genes that are necessary for [[cellular differentiation|differentiation]] of structures within the body. More [[anterior]] regions of the [[brain]] were examined in search of other cell lineage restriction boundaries, and multiple potential [[compartment (development)|boundaries]] continue to be studied (see Developmental Boundaries) <ref name= Kiecker>{{cite journal |author= Kiecker C, Lumsden A |title=Compartments and their boundaries in vertebrate brain development |journal=Nature Reviews: Neuroscience |volume=6 |pages=553–564 |year=2005 |doi= 10.1038/nrn1702}}</ref>.
[[Image:Hoxgenesoffruitfly.svg|thumb|Layout of Hox genes in the fruitfly leading to differential development of segments]]
[[Image:Hoxgenesoffruitfly.svg|thumb|Layout of Hox genes in the fruitfly leading to differential development of segments]]
The importance of these [[compartment (development)|compartments]] as local signaling centers, areas which [[cell signaling|chemically]] influence surrounding [[tissue (biology)|tissue]], was elucidated by first observing differential [[gene expression|expression]] of [[Hox]] genes in various [[compartment (development)|compartments]] and second by observing mutant [[drosophila|D. melanogaster]] and corresponding [[phenotype|phenotypic]] (physical) changes <ref name= Kiecker>{{cite journal |author= Kiecker C, Lumsden A |title=Compartments and their boundaries in vertebrate brain development |journal=Nature Reviews: Neuroscience |volume=6 |pages=553-564 |year=2005}}</ref>.
The importance of these [[compartment (development)|compartments]] as local signaling centers, areas which [[cell signaling|chemically]] influence surrounding [[tissue (biology)|tissue]], was elucidated by first observing differential [[gene expression|expression]] of [[Hox]] genes in various [[compartment (development)|compartments]] and second by observing mutant [[drosophila|D. melanogaster]] and corresponding [[phenotype|phenotypic]] (physical) changes <ref name= Kiecker>{{cite journal |author= Kiecker C, Lumsden A |title=Compartments and their boundaries in vertebrate brain development |journal=Nature Reviews: Neuroscience |volume=6 |pages=553–564 |year=2005 |doi= 10.1038/nrn1702}}</ref>.


The ZLI was first discovered in the [[chick]] using [[explant culture|explant]] and lineage-labeling experiments. In the explant experiments, cells in the region that will become the ZLI, the [[prethalamus]], and the [[thalamus]] in the [[chick]] were removed and placed into separate [[explant culture|cultures]]; the cells continued to grow and retained their identity (the ZLI began [[transcription (genetics)|transcribing]] ''[[shh]]'', whereas the [[prethalamus]] and [[thalamus]] did not). Necessity of the ZLI and its corresponding ''[[shh]]'' expression were evidenced by lack of thalamic and prethalamic [[genetic markers]] in culture (see Signaling) <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1-15 |year=2007}}</ref>. These experiments confirmed the ZLI as a signaling center. In lineage-labeling experiments, cells were genetically marked, so that each time a labeled cell replicated, its [[cell (biology)|progeny]] were marked as well. Cells that were marked in the developing ZLI and their progeny remained restricted to the zone. These experiments demonstrated the ZLI as a cell-lineage restriction boundary <ref name=Zeltser>{{cite journal |author=Zeltser LM, Larsen CW, Lumsden A |title=A new developmental compartment in the forebrain regulated by Lunatic fringe |journal=Nature Neuroscience |volume=4 |issue=7 |pages=683-684 |year=2001}}</ref>.
The ZLI was first discovered in the [[chick]] using [[explant culture|explant]] and lineage-labeling experiments. In the explant experiments, cells in the region that will become the ZLI, the [[prethalamus]], and the [[thalamus]] in the [[chick]] were removed and placed into separate [[explant culture|cultures]]; the cells continued to grow and retained their identity (the ZLI began [[transcription (genetics)|transcribing]] ''[[shh]]'', whereas the [[prethalamus]] and [[thalamus]] did not). Necessity of the ZLI and its corresponding ''[[shh]]'' expression were evidenced by lack of thalamic and prethalamic [[genetic markers]] in culture (see Signaling) <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1–15 |year=2007 |doi=10.1186/1749-8104-2-25}}</ref>. These experiments confirmed the ZLI as a signaling center. In lineage-labeling experiments, cells were genetically marked, so that each time a labeled cell replicated, its [[cell (biology)|progeny]] were marked as well. Cells that were marked in the developing ZLI and their progeny remained restricted to the zone. These experiments demonstrated the ZLI as a cell-lineage restriction boundary <ref name=Zeltser>{{cite journal |author=Zeltser LM, Larsen CW, Lumsden A |title=A new developmental compartment in the forebrain regulated by Lunatic fringe |journal=Nature Neuroscience |volume=4 |issue=7 |pages=683–684 |year=2001 |doi=10.1038/89455}}</ref>.


Not only a boundary, the ZLI is also a [[compartment (development)|compartment]] with separate cell lineage restriction boundaries both [[anterior]] and [[posterior]] of a section of ''[[shh]]'' expression. The importance of the ZLI was once more confirmed by [[ectopic expression]] of ''[[shh]]'' in other regions of the [[forebrain]], known as the [[prosencephalon]] during development (both the [[telencephalon]] and [[diencephalon]]), inducing a ZLI-like region that induces thalamic fate <ref name=Puelles93>{{cite journal |author=Puelles L, Rubenstein JLR |title=Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests a neuromeric organization |journal= Trends in Neuroscience |volume=16 |issue=11 |pages=472-479 |year=1993}}</ref>.
Not only a boundary, the ZLI is also a [[compartment (development)|compartment]] with separate cell lineage restriction boundaries both [[anterior]] and [[posterior]] of a section of ''[[shh]]'' expression. The importance of the ZLI was once more confirmed by [[ectopic expression]] of ''[[shh]]'' in other regions of the [[forebrain]], known as the [[prosencephalon]] during development (both the [[telencephalon]] and [[diencephalon]]), inducing a ZLI-like region that induces thalamic fate <ref name=Puelles93>{{cite journal |author=Puelles L, Rubenstein JLR |title=Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests a neuromeric organization |journal= Trends in Neuroscience |volume=16 |issue=11 |pages=472–479 |year=1993 |doi=10.1016/0166-2236(93)90080-6}}</ref>.


==Developmental Boundaries==
==Developmental Boundaries==
During [[developmental biology|development]] in both [[vertebrate]]s and [[invertebrate]]s, cell lineage restriction boundaries and signaling centers are formed in order to ensure proper [[cellular differentiation|differentiation]] of the body. [[cell signaling|Chemical signals]], like ''[[shh]]'' from the ZLI, are often released from these boundaries and compartments in a [[concentration]] gradient (the chemicals are in much higher concentrations closer to the source) and confer identity to flanking regions. Other genes differentially [[gene expression|expressed]] in these flanking regions aid in ensuring proper differentiation (see Signaling).
During [[developmental biology|development]] in both [[vertebrate]]s and [[invertebrate]]s, cell lineage restriction boundaries and signaling centers are formed in order to ensure proper [[cellular differentiation|differentiation]] of the body. [[cell signaling|Chemical signals]], like ''[[shh]]'' from the ZLI, are often released from these boundaries and compartments in a [[concentration]] gradient (the chemicals are in much higher concentrations closer to the source) and confer identity to flanking regions. Other genes differentially [[gene expression|expressed]] in these flanking regions aid in ensuring proper differentiation (see Signaling).
[[Image:4 week embryo brain.jpg|thumb|Main structures of the developing brain: the prosencephalon (forebrain) consists of the telencephalon and diencephalon, the mesencephalon is the midbrain, and the rhombencephalon is the hindbrain.]]
[[Image:4 week embryo brain.jpg|thumb|Main structures of the developing brain: the prosencephalon (forebrain) consists of the telencephalon and diencephalon, the mesencephalon is the midbrain, and the rhombencephalon is the hindbrain.]]
Many developmental boundaries have been studied: within the forebrain alone, the confirmed cell lineage restriction boundaries are the pallial-subpallial boundary (PSB) dividing the dorsal and ventral telencephalon, the diencephalon-midbrain boundary (DMB) posterior to the ZLI, and the ZLI. The ZLI, like each [[rhombomere]], serves as an independent [[compartment (biology)|compartment]] that confers the identity of [[diencephalon]] in [[anterior]] and [[posterior]] regions. Other developmental boundaries serve as cell-lineage restriction boundaries but not signaling centers, while others are signaling centers to and from which cells can migrate. Despite discoveries of cell lineage restriction boundaries and compartments in the brain, many of the regions studied have been disproven as segmental boundaries. These areas have potential as signaling centers, which have influence over the development of neighboring tissues <ref name= Kiecker>{{cite journal |author= Kiecker C, Lumsden A |title=Compartments and their boundaries in vertebrate brain development |journal=Nature Reviews: Neuroscience |volume=6 |pages=553-564 |year=2005}}</ref>.
Many developmental boundaries have been studied: within the forebrain alone, the confirmed cell lineage restriction boundaries are the pallial-subpallial boundary (PSB) dividing the dorsal and ventral telencephalon, the diencephalon-midbrain boundary (DMB) posterior to the ZLI, and the ZLI. The ZLI, like each [[rhombomere]], serves as an independent [[compartment (biology)|compartment]] that confers the identity of [[diencephalon]] in [[anterior]] and [[posterior]] regions. Other developmental boundaries serve as cell-lineage restriction boundaries but not signaling centers, while others are signaling centers to and from which cells can migrate. Despite discoveries of cell lineage restriction boundaries and compartments in the brain, many of the regions studied have been disproven as segmental boundaries. These areas have potential as signaling centers, which have influence over the development of neighboring tissues <ref name= Kiecker>{{cite journal |author= Kiecker C, Lumsden A |title=Compartments and their boundaries in vertebrate brain development |journal=Nature Reviews: Neuroscience |volume=6 |pages=553–564 |year=2005 |doi= 10.1038/nrn1702}}</ref>.


These boundaries have great influence over other regions of the brain: the placement of the ZLI not only affects the size of adjacent regions but also the size of the [[telencephalon]]. A [[posterior]] shift in the ZLI allows more cells to be allocated to the [[telencephalon]]. The same is true for other developmental boundaries in the brain and throughout the body: shifts in boundaries responsible for allocating a certain amount of tissue to a certain function result in drastic changes in the adult structure. These boundaries are of crucial importance for proper differentiation.
These boundaries have great influence over other regions of the brain: the placement of the ZLI not only affects the size of adjacent regions but also the size of the [[telencephalon]]. A [[posterior]] shift in the ZLI allows more cells to be allocated to the [[telencephalon]]. The same is true for other developmental boundaries in the brain and throughout the body: shifts in boundaries responsible for allocating a certain amount of tissue to a certain function result in drastic changes in the adult structure. These boundaries are of crucial importance for proper differentiation.
Line 20: Line 20:
The prosomeric model is based on the rhombomeric model, which describes each [[rhombomere]] as a [[neuromere]]. Continuing with the pattern of naming, in 1993 Luis Puelles and John Rubenstein suggested a model for the development of the [[forebrain]] based on prosomeres. Prosomeres are [[lateral]] domains developed through differential gene expression necessary for proper differentiation of primary structures in the [[forebrain]], “consisting of the [[diencephalon]], [[hypothalamus]], [[retina]] and [[telencephalon]]” <ref name=Puelles03>{{cite journal |author=Puelles L, Rubenstein JLR |title=Forebrain gene expression domains and the evolving prosomeric model |joural=Trends in Neuroscience |volume=26 |issue=9 |year=2003}}</ref>. Each prosomere is further divided into [[longitudinal plane|longitudinal]] subcompartments, which have not yet been as well characterized. The prosomeres correspond with the structures of the developed [[forebrain]] structures, from most [[caudal]] to most [[rostral]] structures. Like many other regions of the [[vertebrate]] brain studied, not all of the boundaries of prosomeres are lineage restriction boundaries, and not all are signaling centers.
The prosomeric model is based on the rhombomeric model, which describes each [[rhombomere]] as a [[neuromere]]. Continuing with the pattern of naming, in 1993 Luis Puelles and John Rubenstein suggested a model for the development of the [[forebrain]] based on prosomeres. Prosomeres are [[lateral]] domains developed through differential gene expression necessary for proper differentiation of primary structures in the [[forebrain]], “consisting of the [[diencephalon]], [[hypothalamus]], [[retina]] and [[telencephalon]]” <ref name=Puelles03>{{cite journal |author=Puelles L, Rubenstein JLR |title=Forebrain gene expression domains and the evolving prosomeric model |joural=Trends in Neuroscience |volume=26 |issue=9 |year=2003}}</ref>. Each prosomere is further divided into [[longitudinal plane|longitudinal]] subcompartments, which have not yet been as well characterized. The prosomeres correspond with the structures of the developed [[forebrain]] structures, from most [[caudal]] to most [[rostral]] structures. Like many other regions of the [[vertebrate]] brain studied, not all of the boundaries of prosomeres are lineage restriction boundaries, and not all are signaling centers.


Further explanation of the ZLI as well as other genetic and morphological findings have resulted in slight changes to the prosomeric model in 2003 by Puelles and Rubenstein. The current prosomeric model lists p1 through p6, where p1, p2, and p3 correspond to the [[pretectum]], [[thalamus]], and [[prethalamus]], respectively; p4, p5, and p6 collectively refer to the [[telencephalon]] and [[hypothalamus]], though the exact divisions are unclear. Elucidation of the ZLI as both a cell lineage restriction boundary and as a signaling center led to minor changes in the classification of structures within p2 and p3 <ref name=Puelles03>{{cite journal |author=Puelles L, Rubenstein JLR |title=Forebrain gene expression domains and the evolving prosomeric model |joural=Trends in Neuroscience |volume=26 |issue=9 |pages=469-476 |year=2003}}</ref>.
Further explanation of the ZLI as well as other genetic and morphological findings have resulted in slight changes to the prosomeric model in 2003 by Puelles and Rubenstein. The current prosomeric model lists p1 through p6, where p1, p2, and p3 correspond to the [[pretectum]], [[thalamus]], and [[prethalamus]], respectively; p4, p5, and p6 collectively refer to the [[telencephalon]] and [[hypothalamus]], though the exact divisions are unclear. Elucidation of the ZLI as both a cell lineage restriction boundary and as a signaling center led to minor changes in the classification of structures within p2 and p3 <ref name=Puelles03>{{cite journal |author=Puelles L, Rubenstein JLR |title=Forebrain gene expression domains and the evolving prosomeric model |joural=Trends in Neuroscience |volume=26 |issue=9 |pages=469–476 |year=2003}}</ref>.


Shown below in the prosomeric model as revised in 1994 by Rubenstein et al, the prosomeres p1 through p6 help to pattern the [[forebrain]], and the ZLI is marked by the spike of ''[[shh]]'' expression between p2 and p3. Other [[gene expression]] patterns (see Signaling) are shown in the model. The rhombomeres are designated r1 through r8 <ref name=Rubenstein>{{cite journal |author=Rubenstein JLR, Martinez S, Shimamura K, Puelles L |title=The Embryonic Vertebrate Forebrain: The Prosomeric Model |journal=Science |volume=266 |pages=578-580 |year=1994}}</ref>.
Shown below in the prosomeric model as revised in 1994 by Rubenstein et al, the prosomeres p1 through p6 help to pattern the [[forebrain]], and the ZLI is marked by the spike of ''[[shh]]'' expression between p2 and p3. Other [[gene expression]] patterns (see Signaling) are shown in the model. The rhombomeres are designated r1 through r8 <ref name=Rubenstein>{{cite journal |author=Rubenstein JLR, Martinez S, Shimamura K, Puelles L |title=The Embryonic Vertebrate Forebrain: The Prosomeric Model |journal=Science |volume=266 |pages=578–580 |year=1994 |doi=10.1126/science.7939711 |pmid=7939711}}</ref>.


[[Image:Rubenstein et al 1994 Prosomeric Model.png]]
[[Image:Rubenstein et al 1994 Prosomeric Model.png]]
Line 28: Line 28:
==Formation==
==Formation==
===Initial Axis Patterning===
===Initial Axis Patterning===
After [[gastrulation]], the [[embryo]] is completely [[cellular differentiation|undifferentiated]] and requires many different cues to initiate proper [[cellular differentiation|differentiation]] of the body. The top (roof plate, on the dorsal side of the embryo) and bottom (floor plate, on the ventral side) play a crucial role in these first steps: each acts through global [[cell signaling|signaling]] (signaling throughout the entire embryo) for [[anatomical terms of location|dorsoventral]] neural patterning. After completion of the [[developmental biology|development]] of the [[anatomical terms of location|dorsoventral]] axis, more local signaling occurs in the developing brain: developmental boundaries such as the [[midbrain]]-[[hindbrain]] boundary (MHB), [[rhombomere]]s, and the ZLI aid in [[anatomical terms of location|anteroposterior]] organization <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1-15 |year=2007}}</ref>.
After [[gastrulation]], the [[embryo]] is completely [[cellular differentiation|undifferentiated]] and requires many different cues to initiate proper [[cellular differentiation|differentiation]] of the body. The top (roof plate, on the dorsal side of the embryo) and bottom (floor plate, on the ventral side) play a crucial role in these first steps: each acts through global [[cell signaling|signaling]] (signaling throughout the entire embryo) for [[anatomical terms of location|dorsoventral]] neural patterning. After completion of the [[developmental biology|development]] of the [[anatomical terms of location|dorsoventral]] axis, more local signaling occurs in the developing brain: developmental boundaries such as the [[midbrain]]-[[hindbrain]] boundary (MHB), [[rhombomere]]s, and the ZLI aid in [[anatomical terms of location|anteroposterior]] organization <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1–15 |year=2007 |doi=10.1186/1749-8104-2-25}}</ref>.


===Emergence of ''Shh'' Expression===
===Emergence of ''Shh'' Expression===
Shortly after the beginning of [[anatomical terms of location|dorsoventral]] patterning, ''[[shh]]'' is expressed along the [[neural tube|basal plate]] (the bottom) of the [[embryo]], which functions in “[[anatomical terms of location|ventralization]] of the [[neural tube]], promotion of growth and [[proliferation]], and formation of the [[hypothalamus]]” <ref name=Scholpp05>{{cite journal |author=Scholpp S, Wolf O, Brand M, Lumsden A |title=Hedgehog signaling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon |journal=Development |volume=133 |issue=5 |pages=855-864 |year=2005}}</ref>. As the [[embryo]] continues to [[developmental biology|develop]], ''[[shh]]'' expression characteristic of the ZLI extends [[anatomical terms of location|dorsally]] to form a wedge that eventually narrows to a strip at approximately 22 [[somite]]s (the number of developed [[rhombomere]]s) or less than one day in [[zebrafish]]. Although ''[[shh]]'' expression extends [[anatomical terms of location|dorsally]] from the [[neural tube|basal plate]], the ZLI is capable of forming even without the [[neural tube|basal plate]] or [[mesoderm]]al tissue. ''[[Shh]]'' cooperates with [[dlx (gene)|''dlx2'']] and ''fezl'' [[anatomical terms of location|anteriorly]] and ''irx3'' and ''dbx1a'' posteriorly (genes expressed vary among different organisms), which are [[gene]]s that are expressed in the [[prethalamus]] and [[thalamus]], respectively <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167-3176 |year=2007}}</ref>.
Shortly after the beginning of [[anatomical terms of location|dorsoventral]] patterning, ''[[shh]]'' is expressed along the [[neural tube|basal plate]] (the bottom) of the [[embryo]], which functions in “[[anatomical terms of location|ventralization]] of the [[neural tube]], promotion of growth and [[proliferation]], and formation of the [[hypothalamus]]” <ref name=Scholpp05>{{cite journal |author=Scholpp S, Wolf O, Brand M, Lumsden A |title=Hedgehog signaling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon |journal=Development |volume=133 |issue=5 |pages=855–864 |year=2005 |doi=10.1242/dev.02248 |pmid=16452095}}</ref>. As the [[embryo]] continues to [[developmental biology|develop]], ''[[shh]]'' expression characteristic of the ZLI extends [[anatomical terms of location|dorsally]] to form a wedge that eventually narrows to a strip at approximately 22 [[somite]]s (the number of developed [[rhombomere]]s) or less than one day in [[zebrafish]]. Although ''[[shh]]'' expression extends [[anatomical terms of location|dorsally]] from the [[neural tube|basal plate]], the ZLI is capable of forming even without the [[neural tube|basal plate]] or [[mesoderm]]al tissue. ''[[Shh]]'' cooperates with [[dlx (gene)|''dlx2'']] and ''fezl'' [[anatomical terms of location|anteriorly]] and ''irx3'' and ''dbx1a'' posteriorly (genes expressed vary among different organisms), which are [[gene]]s that are expressed in the [[prethalamus]] and [[thalamus]], respectively <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167–3176 |year=2007 |doi=10.1242/dev.001461 |pmid=17670791}}</ref>.


The ZLI is also characterized by a lack of [[lunatic fringe]] (''lfng''), which is observable even before ''[[shh]]'' expression is observed in the forming ZLI. This indicates that cells are fated for ZLI formation before induction by ''[[shh]]'' (n.b. ''[[shh]]'' signals from the ZLI and is characteristic of the [[compartment (biology)|compartment]] during and after formation). [[lunatic fringe|''Lfng'']] is expressed very early (soon after [[gastrulation]]) in the region that will become the ZLI, but shortly thereafter expression recedes through migration of [[lunatic fringe|''lfng'']]-expressing cells to form the [[lunatic fringe|''lfng'']]-free wedge characteristic of the developing ZLI. ''[[Shh]]'' expression does not extend [[anatomical terms of location|dorsally]] until a few hours later <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1-15 |year=2007}}</ref>.
The ZLI is also characterized by a lack of [[lunatic fringe]] (''lfng''), which is observable even before ''[[shh]]'' expression is observed in the forming ZLI. This indicates that cells are fated for ZLI formation before induction by ''[[shh]]'' (n.b. ''[[shh]]'' signals from the ZLI and is characteristic of the [[compartment (biology)|compartment]] during and after formation). [[lunatic fringe|''Lfng'']] is expressed very early (soon after [[gastrulation]]) in the region that will become the ZLI, but shortly thereafter expression recedes through migration of [[lunatic fringe|''lfng'']]-expressing cells to form the [[lunatic fringe|''lfng'']]-free wedge characteristic of the developing ZLI. ''[[Shh]]'' expression does not extend [[anatomical terms of location|dorsally]] until a few hours later <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1–15 |year=2007 |doi=10.1186/1749-8104-2-25}}</ref>.


===Positioning===
===Positioning===
The factors influencing the formation and location of the ZLI are widely studied but still disputed. Differences between different [[animal model]]s further complicate elucidation of the [[genetic pathway|pathways]], specifically between [[chick]]s/ [[mammal]]ian models and [[zebrafish]].
The factors influencing the formation and location of the ZLI are widely studied but still disputed. Differences between different [[animal model]]s further complicate elucidation of the [[genetic pathway|pathways]], specifically between [[chick]]s/ [[mammal]]ian models and [[zebrafish]].
[[Wnt signaling pathway|Wnt]] (the family wingless) genes are crucial for the development of the ZLI both directly and indirectly in all animal systems. Along with the role of [[Wnt signaling pathway|Wnt]] genes in patterning the [[anatomical terms of location|anteroposterior]] axis through gradient polarization, [[Wnt signaling pathway|''Wnt8b'']] is expressed within the ZLI itself and may help guide [[anatomical terms of location|dorsal]] movement of ''[[shh]]'' expression <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17-26 |year=2007}}</ref>. The [[Wnt signaling pathway|Wnt]] polarization gradient has been linked to induction of ZLI-patterning genes ''irx3'' and ''[[six3]]'', which border the ZLI [[anatomical terms of location|posteriorly]] and [[anatomical terms of location|anteriorly]], respectively. However, these [[gene]]s have been shown to be non-essential for ZLI formation in [[zebrafish]] and have been reevaluated in other models <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167-3176 |year=2007}}</ref>.
[[Wnt signaling pathway|Wnt]] (the family wingless) genes are crucial for the development of the ZLI both directly and indirectly in all animal systems. Along with the role of [[Wnt signaling pathway|Wnt]] genes in patterning the [[anatomical terms of location|anteroposterior]] axis through gradient polarization, [[Wnt signaling pathway|''Wnt8b'']] is expressed within the ZLI itself and may help guide [[anatomical terms of location|dorsal]] movement of ''[[shh]]'' expression <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17–26 |year=2007 |doi=10.1016/j.brainresrev.2006.06.004}}</ref>. The [[Wnt signaling pathway|Wnt]] polarization gradient has been linked to induction of ZLI-patterning genes ''irx3'' and ''[[six3]]'', which border the ZLI [[anatomical terms of location|posteriorly]] and [[anatomical terms of location|anteriorly]], respectively. However, these [[gene]]s have been shown to be non-essential for ZLI formation in [[zebrafish]] and have been reevaluated in other models <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167–3176 |year=2007 |doi=10.1242/dev.001461 |pmid=17670791}}</ref>.


Specification of the ZLI may also involve the [[ventral]] [[tissue (biology)|tissues]] of the [[embryo]]: the prechordal and epichordal plates, or neuroepithelial tissue (see figure). Interactions between these tissues may be responsible for the recession of expression of [[lunatic fringe|''lfng'']] which allows [[anatomical terms of location|dorsal]] movement ''[[shh]]'' expression <ref name=Vieira>{{cite journal |author=Vieira C, Garda AL, Shimamura K, Martinez S |title=Thalamic development induced by ''Shh'' in the chick embryo |journal=Developmental Biology |volume=284 |pages=351-363 |year=2005}}</ref>. The specific prechrodal and epichordal plates, characterized by expression of ''[[six3]]'' and ''irx3'', respectively, may influence positioning of the ZLI more so than the genes themselves <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1-15 |year=2007}}</ref>. The prechrodal plate [[ventral|ventrally]] borders the [[telencephalon]], with the epichrodal plate [[anatomical terms of location|posterior]] to it.
Specification of the ZLI may also involve the [[ventral]] [[tissue (biology)|tissues]] of the [[embryo]]: the prechordal and epichordal plates, or neuroepithelial tissue (see figure). Interactions between these tissues may be responsible for the recession of expression of [[lunatic fringe|''lfng'']] which allows [[anatomical terms of location|dorsal]] movement ''[[shh]]'' expression <ref name=Vieira>{{cite journal |author=Vieira C, Garda AL, Shimamura K, Martinez S |title=Thalamic development induced by ''Shh'' in the chick embryo |journal=Developmental Biology |volume=284 |pages=351–363 |year=2005 |doi=10.1016/j.ydbio.2005.05.031}}</ref>. The specific prechrodal and epichordal plates, characterized by expression of ''[[six3]]'' and ''irx3'', respectively, may influence positioning of the ZLI more so than the genes themselves <ref name=Guinazu>{{cite journal |author=Guinazu MF, Chambers D, Lumsden A, Kiecker C |title=Tissue interactions in the developing chick diencephalon |journal=Neural Development |volume=2 |issue=25 |pages=1–15 |year=2007 |doi=10.1186/1749-8104-2-25}}</ref>. The prechrodal plate [[ventral|ventrally]] borders the [[telencephalon]], with the epichrodal plate [[anatomical terms of location|posterior]] to it.
Studies of the formation of the ZLI performed in [[zebrafish]] have revealed the significance of ''[[otx2]]'' and ''irx1'' in ZLI positioning. ''[[Otx2]]'' expression characterizes the developing [[superior colliculus|optic tectum]], which is responsible for sight processing. Expression extends [[anatomical terms of location|anteriorly]] and ends sharply at the ZLI, with high [[gene expression|expression]] along the line where ''[[shh]]'' is expressed <ref name=Ba-Charvet>{{cite journal |author=Ba-Charvet KTN, von Boxberg Y, Guazzi S, Boncinelli E, Godement P |title=A potential role for the OTX2 homeoprotein in creating early 'highways' for axon extension in the rostral brain |journal=Development |volume=125 |pages=4273-4282 |year=1998}}</ref>. Before the ZLI is formed, ''[[otx2]]'' is expressed ubiquitously throughout the [[forebrain]], and begins to recede to the position of the putative ZLI. Experiments where ''[[otx2]]'' expression was repressed showed no [[dorsal]] movement of ''[[shh]]'' expression and no ZLI formation <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167-3176 |year=2007}}</ref>. ''Irx1'', which is analogous to ''irx3'' in birds and mammals, is expressed posterior to the ZLI. Studies have suggested that while ''[[otx2]]'' positively restricts the ZLI [[anterior]]ly (''[[shh]]'' cannot be expressed where ''[[otx2]]'' is not), ''irx1'' negatively restricts the ZLI [[posterior]]ly <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167-3176 |year=2007}}</ref>. Other genes crucial for differentiation in the brain, including Fgf genes responsible for patterning of the midbrain-hindbrain boundary (MHB), have been implicated in positioning of the ZLI <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17-26 |year=2007}}</ref>.
Studies of the formation of the ZLI performed in [[zebrafish]] have revealed the significance of ''[[otx2]]'' and ''irx1'' in ZLI positioning. ''[[Otx2]]'' expression characterizes the developing [[superior colliculus|optic tectum]], which is responsible for sight processing. Expression extends [[anatomical terms of location|anteriorly]] and ends sharply at the ZLI, with high [[gene expression|expression]] along the line where ''[[shh]]'' is expressed <ref name=Ba-Charvet>{{cite journal |author=Ba-Charvet KTN, von Boxberg Y, Guazzi S, Boncinelli E, Godement P |title=A potential role for the OTX2 homeoprotein in creating early 'highways' for axon extension in the rostral brain |journal=Development |volume=125 |pages=4273–4282 |year=1998}}</ref>. Before the ZLI is formed, ''[[otx2]]'' is expressed ubiquitously throughout the [[forebrain]], and begins to recede to the position of the putative ZLI. Experiments where ''[[otx2]]'' expression was repressed showed no [[dorsal]] movement of ''[[shh]]'' expression and no ZLI formation <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167–3176 |year=2007 |doi=10.1242/dev.001461 |pmid=17670791}}</ref>. ''Irx1'', which is analogous to ''irx3'' in birds and mammals, is expressed posterior to the ZLI. Studies have suggested that while ''[[otx2]]'' positively restricts the ZLI [[anterior]]ly (''[[shh]]'' cannot be expressed where ''[[otx2]]'' is not), ''irx1'' negatively restricts the ZLI [[posterior]]ly <ref name=Scholpp07>{{cite journal |author=Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C |title=Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon |journal=Development |volume=134 |issue=17 |pages=3167–3176 |year=2007 |doi=10.1242/dev.001461 |pmid=17670791}}</ref>. Other genes crucial for differentiation in the brain, including Fgf genes responsible for patterning of the midbrain-hindbrain boundary (MHB), have been implicated in positioning of the ZLI <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17–26 |year=2007 |doi=10.1016/j.brainresrev.2006.06.004}}</ref>.


Studies on the role of ''[[shh]]'' signaling in the ZLI were difficult to study for many years, because mutants lacking expression have many developmental deficits including lack of a [[diencephalon]] <ref name=Hashimoto-Torii>{{cite journal |author=Hashimoto-Torii K, Motoyama J, Hui CC, Kuroiwa A, Nakafuku M, Shimamura K |title=Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus |journal=Mechanisms of Development |volume=120 |pages=1097-1111 |year=2003}}</ref>. [[explant culture|Explant]] and lineage-labeling experiments previously described aided in elucidation of the role of ''[[shh]]'' and other genes in differentiation of these [[tissue (biology)|tissues]].
Studies on the role of ''[[shh]]'' signaling in the ZLI were difficult to study for many years, because mutants lacking expression have many developmental deficits including lack of a [[diencephalon]] <ref name=Hashimoto-Torii>{{cite journal |author=Hashimoto-Torii K, Motoyama J, Hui CC, Kuroiwa A, Nakafuku M, Shimamura K |title=Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus |journal=Mechanisms of Development |volume=120 |pages=1097–1111 |year=2003 |doi=10.1016/j.mod.2003.09.001}}</ref>. [[explant culture|Explant]] and lineage-labeling experiments previously described aided in elucidation of the role of ''[[shh]]'' and other genes in differentiation of these [[tissue (biology)|tissues]].


===Differentiation After ZLI Degradation===
===Differentiation After ZLI Degradation===
After differentiation of the [[progenitor cell]]s (at a precise [[developmental biology|stage]] yet to be fully determined), the ZLI and its lineage restriction disappears, allowing cells to migrate across the former boundary and the [[dorsal]] and [[ventral]] [[thalamus|thalami]] to merge into one functional unit, as shown by replication-incompetent [[retrovirus|retroviral]] experiments that marked cells and showed their migration throughout the diencephalon <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17-26 |year=2007}}</ref>.
After differentiation of the [[progenitor cell]]s (at a precise [[developmental biology|stage]] yet to be fully determined), the ZLI and its lineage restriction disappears, allowing cells to migrate across the former boundary and the [[dorsal]] and [[ventral]] [[thalamus|thalami]] to merge into one functional unit, as shown by replication-incompetent [[retrovirus|retroviral]] experiments that marked cells and showed their migration throughout the diencephalon <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17–26 |year=2007 |doi=10.1016/j.brainresrev.2006.06.004}}</ref>.


==Signaling==
==Signaling==
After establishment of the ZLI, ''[[shh]]'' has been shown to induce [[gene expression|expression]] of [[thalamus|thalamic]] and [[prethalamus|prethalamic]] [[genetic marker|markers]], ''gbx2'' and [[dlx (gene)|''dlx2'']]/ ''nkx2.1'', respectively. This differential induction most likely is due to the expression of genes such as ''irx3'' in the [[thalamus]]: [[ectopic expression]] experiments showed that if ''irx3'', which is normally expressed in the developing [[thalamus]], is expressed [[anterior]] to the ZLI, then the developing [[prethalamus]] will change identity <ref name=Vieira>{{cite journal |author=Vieira C, Garda AL, Shimamura K, Martinez S |title=Thalamic development induced by Shh in the chick embryo |journal=Developmental Biology |volume=284 |pages=351-363 |year=2005}}</ref>. Note that these genes which help confer ''[[shh]]'' competence help to pattern the ZLI.
After establishment of the ZLI, ''[[shh]]'' has been shown to induce [[gene expression|expression]] of [[thalamus|thalamic]] and [[prethalamus|prethalamic]] [[genetic marker|markers]], ''gbx2'' and [[dlx (gene)|''dlx2'']]/ ''nkx2.1'', respectively. This differential induction most likely is due to the expression of genes such as ''irx3'' in the [[thalamus]]: [[ectopic expression]] experiments showed that if ''irx3'', which is normally expressed in the developing [[thalamus]], is expressed [[anterior]] to the ZLI, then the developing [[prethalamus]] will change identity <ref name=Vieira>{{cite journal |author=Vieira C, Garda AL, Shimamura K, Martinez S |title=Thalamic development induced by Shh in the chick embryo |journal=Developmental Biology |volume=284 |pages=351–363 |year=2005 |doi=10.1016/j.ydbio.2005.05.031}}</ref>. Note that these genes which help confer ''[[shh]]'' competence help to pattern the ZLI.


Signaling from the ZLI cooperating with [[thalamus|thalamic]] and [[prethalamus|prethalamic]] [[genetic marker|markers]] ensures the migration of post-mitotic (neural progenitor) cells to the mantle zone where the cells assemble into [[nucleus (neuroanatomy)|nuclei]] characteristic of the [[thalamus]]. These [[nucleus (neuroanatomy)|nuclei]] are the mechanism of the relay of information from the [[thalamus]] to the [[cerebral cortex|cortex]]. The [[thalamus]] itself is highly diverse, with each [[nucleus (neuroanatomy)|nucleus]] having distinct [[morphology (biology)|morphologies]] and physiologies according to the region of the [[brain]] to which it is connected. These differences are thought to originate in differential [[gene expression]] in the [[thalamus]] and [[prethalamus]], which allows for a single structure with multiple different and separate functions once the two have merged and completed growth and differentiation <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17-26 |year=2007}}</ref>.
Signaling from the ZLI cooperating with [[thalamus|thalamic]] and [[prethalamus|prethalamic]] [[genetic marker|markers]] ensures the migration of post-mitotic (neural progenitor) cells to the mantle zone where the cells assemble into [[nucleus (neuroanatomy)|nuclei]] characteristic of the [[thalamus]]. These [[nucleus (neuroanatomy)|nuclei]] are the mechanism of the relay of information from the [[thalamus]] to the [[cerebral cortex|cortex]]. The [[thalamus]] itself is highly diverse, with each [[nucleus (neuroanatomy)|nucleus]] having distinct [[morphology (biology)|morphologies]] and physiologies according to the region of the [[brain]] to which it is connected. These differences are thought to originate in differential [[gene expression]] in the [[thalamus]] and [[prethalamus]], which allows for a single structure with multiple different and separate functions once the two have merged and completed growth and differentiation <ref name=Lim>{{cite journal |author=Lim Y, Golden JA |title=Patterning the developing diencephalon |journal=Brain Research Reviews |volume=53 |pages=17–26 |year=2007 |doi=10.1016/j.brainresrev.2006.06.004}}</ref>.


From Vieira et al, 2005, the image below shows an overview of expression of some genes in the forebrain and midbrain, many of which are influenced by signaling from the ZLI. The telencephalon is marked by "T," the prethalamus by "PTh," and the thalamus by "Th" <ref name=Vieira>{{cite journal |author=Vieira C, Garda AL, Shimamura K, Martinez S |title=Thalamic development induced by Shh in the chick embryo |journal=Developmental Biology |volume=284 |pages=351-363 |year=2005}}</ref>.
From Vieira et al, 2005, the image below shows an overview of expression of some genes in the forebrain and midbrain, many of which are influenced by signaling from the ZLI. The telencephalon is marked by "T," the prethalamus by "PTh," and the thalamus by "Th" <ref name=Vieira>{{cite journal |author=Vieira C, Garda AL, Shimamura K, Martinez S |title=Thalamic development induced by Shh in the chick embryo |journal=Developmental Biology |volume=284 |pages=351–363 |year=2005 |doi=10.1016/j.ydbio.2005.05.031}}</ref>.


[[Image:Vieira et al Signaling from the ZLI.png]]
[[Image:Vieira et al Signaling from the ZLI.png]]

Revision as of 14:28, 14 December 2008

The zona limitans intrathalamica (ZLI) is a lineage-restriction compartment and primary developmental boundary in the vertebrate forebrain (which is analogous to the human cerebrum) that serves as a signaling center and a restrictive border between the thalamus (also known as the dorsal thalamus) and the prethalamus (ventral thalamus). Sonic hedgehog (shh) signaling from the ZLI is crucial in the development of the diencephalon, which develops into the thalamus, the pretectum, and the anterior tegmental structures [1]. The ZLI together with the prethalamus and thalamus make up the mid-diencephalic territory (MDT) [2].

Forebrain structures in the fish at 3-4 days (with pretectum from midbrain for better depiction of boundaries), with shh expression in red; rostral extension between the prethalamus and thalamus depicts the ZLI.

Discovery

Cell lineage restriction boundaries, across which replicating cells cannot migrate, were first discovered in invertebrates, where the expression of various Hox genes in each compartment confer the differentiation of observable segments in the adult body of Drosophila melanogaster. Analogous structures were discovered in the developing vertebrate brain. Rhombomeres, which extend down the embryo from the hindbrain, contain clear boundaries and each express various Hox genes that are necessary for differentiation of structures within the body. More anterior regions of the brain were examined in search of other cell lineage restriction boundaries, and multiple potential boundaries continue to be studied (see Developmental Boundaries) [3].

Layout of Hox genes in the fruitfly leading to differential development of segments

The importance of these compartments as local signaling centers, areas which chemically influence surrounding tissue, was elucidated by first observing differential expression of Hox genes in various compartments and second by observing mutant D. melanogaster and corresponding phenotypic (physical) changes [3].

The ZLI was first discovered in the chick using explant and lineage-labeling experiments. In the explant experiments, cells in the region that will become the ZLI, the prethalamus, and the thalamus in the chick were removed and placed into separate cultures; the cells continued to grow and retained their identity (the ZLI began transcribing shh, whereas the prethalamus and thalamus did not). Necessity of the ZLI and its corresponding shh expression were evidenced by lack of thalamic and prethalamic genetic markers in culture (see Signaling) [4]. These experiments confirmed the ZLI as a signaling center. In lineage-labeling experiments, cells were genetically marked, so that each time a labeled cell replicated, its progeny were marked as well. Cells that were marked in the developing ZLI and their progeny remained restricted to the zone. These experiments demonstrated the ZLI as a cell-lineage restriction boundary [5].

Not only a boundary, the ZLI is also a compartment with separate cell lineage restriction boundaries both anterior and posterior of a section of shh expression. The importance of the ZLI was once more confirmed by ectopic expression of shh in other regions of the forebrain, known as the prosencephalon during development (both the telencephalon and diencephalon), inducing a ZLI-like region that induces thalamic fate [6].

Developmental Boundaries

During development in both vertebrates and invertebrates, cell lineage restriction boundaries and signaling centers are formed in order to ensure proper differentiation of the body. Chemical signals, like shh from the ZLI, are often released from these boundaries and compartments in a concentration gradient (the chemicals are in much higher concentrations closer to the source) and confer identity to flanking regions. Other genes differentially expressed in these flanking regions aid in ensuring proper differentiation (see Signaling).

Main structures of the developing brain: the prosencephalon (forebrain) consists of the telencephalon and diencephalon, the mesencephalon is the midbrain, and the rhombencephalon is the hindbrain.

Many developmental boundaries have been studied: within the forebrain alone, the confirmed cell lineage restriction boundaries are the pallial-subpallial boundary (PSB) dividing the dorsal and ventral telencephalon, the diencephalon-midbrain boundary (DMB) posterior to the ZLI, and the ZLI. The ZLI, like each rhombomere, serves as an independent compartment that confers the identity of diencephalon in anterior and posterior regions. Other developmental boundaries serve as cell-lineage restriction boundaries but not signaling centers, while others are signaling centers to and from which cells can migrate. Despite discoveries of cell lineage restriction boundaries and compartments in the brain, many of the regions studied have been disproven as segmental boundaries. These areas have potential as signaling centers, which have influence over the development of neighboring tissues [3].

These boundaries have great influence over other regions of the brain: the placement of the ZLI not only affects the size of adjacent regions but also the size of the telencephalon. A posterior shift in the ZLI allows more cells to be allocated to the telencephalon. The same is true for other developmental boundaries in the brain and throughout the body: shifts in boundaries responsible for allocating a certain amount of tissue to a certain function result in drastic changes in the adult structure. These boundaries are of crucial importance for proper differentiation.

Prosomeric Model

The prosomeric model is based on the rhombomeric model, which describes each rhombomere as a neuromere. Continuing with the pattern of naming, in 1993 Luis Puelles and John Rubenstein suggested a model for the development of the forebrain based on prosomeres. Prosomeres are lateral domains developed through differential gene expression necessary for proper differentiation of primary structures in the forebrain, “consisting of the diencephalon, hypothalamus, retina and telencephalon[7]. Each prosomere is further divided into longitudinal subcompartments, which have not yet been as well characterized. The prosomeres correspond with the structures of the developed forebrain structures, from most caudal to most rostral structures. Like many other regions of the vertebrate brain studied, not all of the boundaries of prosomeres are lineage restriction boundaries, and not all are signaling centers.

Further explanation of the ZLI as well as other genetic and morphological findings have resulted in slight changes to the prosomeric model in 2003 by Puelles and Rubenstein. The current prosomeric model lists p1 through p6, where p1, p2, and p3 correspond to the pretectum, thalamus, and prethalamus, respectively; p4, p5, and p6 collectively refer to the telencephalon and hypothalamus, though the exact divisions are unclear. Elucidation of the ZLI as both a cell lineage restriction boundary and as a signaling center led to minor changes in the classification of structures within p2 and p3 [7].

Shown below in the prosomeric model as revised in 1994 by Rubenstein et al, the prosomeres p1 through p6 help to pattern the forebrain, and the ZLI is marked by the spike of shh expression between p2 and p3. Other gene expression patterns (see Signaling) are shown in the model. The rhombomeres are designated r1 through r8 [8].

File:Rubenstein et al 1994 Prosomeric Model.png

Formation

Initial Axis Patterning

After gastrulation, the embryo is completely undifferentiated and requires many different cues to initiate proper differentiation of the body. The top (roof plate, on the dorsal side of the embryo) and bottom (floor plate, on the ventral side) play a crucial role in these first steps: each acts through global signaling (signaling throughout the entire embryo) for dorsoventral neural patterning. After completion of the development of the dorsoventral axis, more local signaling occurs in the developing brain: developmental boundaries such as the midbrain-hindbrain boundary (MHB), rhombomeres, and the ZLI aid in anteroposterior organization [4].

Emergence of Shh Expression

Shortly after the beginning of dorsoventral patterning, shh is expressed along the basal plate (the bottom) of the embryo, which functions in “ventralization of the neural tube, promotion of growth and proliferation, and formation of the hypothalamus[9]. As the embryo continues to develop, shh expression characteristic of the ZLI extends dorsally to form a wedge that eventually narrows to a strip at approximately 22 somites (the number of developed rhombomeres) or less than one day in zebrafish. Although shh expression extends dorsally from the basal plate, the ZLI is capable of forming even without the basal plate or mesodermal tissue. Shh cooperates with dlx2 and fezl anteriorly and irx3 and dbx1a posteriorly (genes expressed vary among different organisms), which are genes that are expressed in the prethalamus and thalamus, respectively [2].

The ZLI is also characterized by a lack of lunatic fringe (lfng), which is observable even before shh expression is observed in the forming ZLI. This indicates that cells are fated for ZLI formation before induction by shh (n.b. shh signals from the ZLI and is characteristic of the compartment during and after formation). Lfng is expressed very early (soon after gastrulation) in the region that will become the ZLI, but shortly thereafter expression recedes through migration of lfng-expressing cells to form the lfng-free wedge characteristic of the developing ZLI. Shh expression does not extend dorsally until a few hours later [4].

Positioning

The factors influencing the formation and location of the ZLI are widely studied but still disputed. Differences between different animal models further complicate elucidation of the pathways, specifically between chicks/ mammalian models and zebrafish. Wnt (the family wingless) genes are crucial for the development of the ZLI both directly and indirectly in all animal systems. Along with the role of Wnt genes in patterning the anteroposterior axis through gradient polarization, Wnt8b is expressed within the ZLI itself and may help guide dorsal movement of shh expression [10]. The Wnt polarization gradient has been linked to induction of ZLI-patterning genes irx3 and six3, which border the ZLI posteriorly and anteriorly, respectively. However, these genes have been shown to be non-essential for ZLI formation in zebrafish and have been reevaluated in other models [2].

Specification of the ZLI may also involve the ventral tissues of the embryo: the prechordal and epichordal plates, or neuroepithelial tissue (see figure). Interactions between these tissues may be responsible for the recession of expression of lfng which allows dorsal movement shh expression [11]. The specific prechrodal and epichordal plates, characterized by expression of six3 and irx3, respectively, may influence positioning of the ZLI more so than the genes themselves [4]. The prechrodal plate ventrally borders the telencephalon, with the epichrodal plate posterior to it. Studies of the formation of the ZLI performed in zebrafish have revealed the significance of otx2 and irx1 in ZLI positioning. Otx2 expression characterizes the developing optic tectum, which is responsible for sight processing. Expression extends anteriorly and ends sharply at the ZLI, with high expression along the line where shh is expressed [12]. Before the ZLI is formed, otx2 is expressed ubiquitously throughout the forebrain, and begins to recede to the position of the putative ZLI. Experiments where otx2 expression was repressed showed no dorsal movement of shh expression and no ZLI formation [2]. Irx1, which is analogous to irx3 in birds and mammals, is expressed posterior to the ZLI. Studies have suggested that while otx2 positively restricts the ZLI anteriorly (shh cannot be expressed where otx2 is not), irx1 negatively restricts the ZLI posteriorly [2]. Other genes crucial for differentiation in the brain, including Fgf genes responsible for patterning of the midbrain-hindbrain boundary (MHB), have been implicated in positioning of the ZLI [10].

Studies on the role of shh signaling in the ZLI were difficult to study for many years, because mutants lacking expression have many developmental deficits including lack of a diencephalon [13]. Explant and lineage-labeling experiments previously described aided in elucidation of the role of shh and other genes in differentiation of these tissues.

Differentiation After ZLI Degradation

After differentiation of the progenitor cells (at a precise stage yet to be fully determined), the ZLI and its lineage restriction disappears, allowing cells to migrate across the former boundary and the dorsal and ventral thalami to merge into one functional unit, as shown by replication-incompetent retroviral experiments that marked cells and showed their migration throughout the diencephalon [10].

Signaling

After establishment of the ZLI, shh has been shown to induce expression of thalamic and prethalamic markers, gbx2 and dlx2/ nkx2.1, respectively. This differential induction most likely is due to the expression of genes such as irx3 in the thalamus: ectopic expression experiments showed that if irx3, which is normally expressed in the developing thalamus, is expressed anterior to the ZLI, then the developing prethalamus will change identity [11]. Note that these genes which help confer shh competence help to pattern the ZLI.

Signaling from the ZLI cooperating with thalamic and prethalamic markers ensures the migration of post-mitotic (neural progenitor) cells to the mantle zone where the cells assemble into nuclei characteristic of the thalamus. These nuclei are the mechanism of the relay of information from the thalamus to the cortex. The thalamus itself is highly diverse, with each nucleus having distinct morphologies and physiologies according to the region of the brain to which it is connected. These differences are thought to originate in differential gene expression in the thalamus and prethalamus, which allows for a single structure with multiple different and separate functions once the two have merged and completed growth and differentiation [10].

From Vieira et al, 2005, the image below shows an overview of expression of some genes in the forebrain and midbrain, many of which are influenced by signaling from the ZLI. The telencephalon is marked by "T," the prethalamus by "PTh," and the thalamus by "Th" [11].

File:Vieira et al Signaling from the ZLI.png

References

  1. ^ Garcia-Lopez R, Vieira C, Echevarria D, Martinez S (2004). "Fate map of the diencephalon and the zona limitans at 10-somites stage in chick embryos". Developmental Biology. 268: 514–530. doi:10.1016/j.ydbio.2003.12.038.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ a b c d e Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C (2007). "Otx1l, Otx2, and Irx1b establish and position the ZLI in the diencephalon". Development. 134 (17): 3167–3176. doi:10.1242/dev.001461. PMID 17670791.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b c Kiecker C, Lumsden A (2005). "Compartments and their boundaries in vertebrate brain development". Nature Reviews: Neuroscience. 6: 553–564. doi:10.1038/nrn1702.
  4. ^ a b c d Guinazu MF, Chambers D, Lumsden A, Kiecker C (2007). "Tissue interactions in the developing chick diencephalon". Neural Development. 2 (25): 1–15. doi:10.1186/1749-8104-2-25.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  5. ^ Zeltser LM, Larsen CW, Lumsden A (2001). "A new developmental compartment in the forebrain regulated by Lunatic fringe". Nature Neuroscience. 4 (7): 683–684. doi:10.1038/89455.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Puelles L, Rubenstein JLR (1993). "Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests a neuromeric organization". Trends in Neuroscience. 16 (11): 472–479. doi:10.1016/0166-2236(93)90080-6.
  7. ^ a b Puelles L, Rubenstein JLR (2003). "Forebrain gene expression domains and the evolving prosomeric model". 26 (9). {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |joural= ignored (help) Cite error: The named reference "Puelles03" was defined multiple times with different content (see the help page).
  8. ^ Rubenstein JLR, Martinez S, Shimamura K, Puelles L (1994). "The Embryonic Vertebrate Forebrain: The Prosomeric Model". Science. 266: 578–580. doi:10.1126/science.7939711. PMID 7939711.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Scholpp S, Wolf O, Brand M, Lumsden A (2005). "Hedgehog signaling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon". Development. 133 (5): 855–864. doi:10.1242/dev.02248. PMID 16452095.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b c d Lim Y, Golden JA (2007). "Patterning the developing diencephalon". Brain Research Reviews. 53: 17–26. doi:10.1016/j.brainresrev.2006.06.004.
  11. ^ a b c Vieira C, Garda AL, Shimamura K, Martinez S (2005). "Thalamic development induced by Shh in the chick embryo". Developmental Biology. 284: 351–363. doi:10.1016/j.ydbio.2005.05.031.{{cite journal}}: CS1 maint: multiple names: authors list (link) Cite error: The named reference "Vieira" was defined multiple times with different content (see the help page).
  12. ^ Ba-Charvet KTN, von Boxberg Y, Guazzi S, Boncinelli E, Godement P (1998). "A potential role for the OTX2 homeoprotein in creating early 'highways' for axon extension in the rostral brain". Development. 125: 4273–4282.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Hashimoto-Torii K, Motoyama J, Hui CC, Kuroiwa A, Nakafuku M, Shimamura K (2003). "Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus". Mechanisms of Development. 120: 1097–1111. doi:10.1016/j.mod.2003.09.001.{{cite journal}}: CS1 maint: multiple names: authors list (link)