Queen (butterfly): Difference between revisions
Polinizador (talk | contribs) |
m Added 6 dois to journal cites using AWB (10209) |
||
Line 83: | Line 83: | ||
==Defense== |
==Defense== |
||
The Queen is one of many insects that derives chemical defenses against its predators from its food plant. Most of the toxic [[cardenolides]] that make queens so unpalatable to its predators are sequestered from larval host plants.<ref name="new 5">{{cite journal|last=Ritland|first=David B.|title=Palatability of aposematic queen butterflies (Danaus gilippus) feeding onSarcostemma clausum (Asclepiadaceae) in Florida|journal=Journal of Chemical Ecology|date=August 1991|volume=17|issue=8|pages=1593–1610|accessdate=25 October 2013}}</ref> |
The Queen is one of many insects that derives chemical defenses against its predators from its food plant. Most of the toxic [[cardenolides]] that make queens so unpalatable to its predators are sequestered from larval host plants.<ref name="new 5">{{cite journal|last=Ritland|first=David B.|title=Palatability of aposematic queen butterflies (Danaus gilippus) feeding onSarcostemma clausum (Asclepiadaceae) in Florida|journal=Journal of Chemical Ecology|date=August 1991|volume=17|issue=8|pages=1593–1610|accessdate=25 October 2013|doi=10.1007/bf00984691}}</ref> |
||
===Mimicry in cardenolide-derived defense=== |
===Mimicry in cardenolide-derived defense=== |
||
For quite some time, the Queen had been regarded as highly unpalatable to its vertebrate (mainly avian) predators. This is due to the fact that the Queen, like its cousin the [[Monarch butterfly|Monarch]], feeds largely on Asclepiads. As the Queen and the Monarch are closely related, it was assumed that the Queen also possesses the ability to effectively sequester and store [[cardenolides]] present in [[milkweeds]].<ref name="new 3">{{cite journal|last=Ritland|first=David B.|title=Variation in Palatability of Queen Butterflies (Danaus Gilippus) and Implications Regarding Mimicry|journal=Ecology|date=Apr 1994|volume=75|issue=3|pages=732–746|accessdate=25 October 2013}}</ref> As such, the Queen and the [[Viceroy (butterfly)|Florida Viceroy]] was long regarded a classic model-mimic example of [[Batesian mimicry]], similar to the relationship exhibited by the Monarch and the Viceroy.<ref name="new 1">{{cite journal|last=van Zandt Brower|first=Jane|title=Experimental Studies of Mimicry in Some North American Butterflies. Part III. Danaus gilippus berenice and Limenitis archippus floridensis|journal=Evolution|date=September 1958|volume=12|issue=3|pages=273–285|accessdate=25 October 2013}}</ref> |
For quite some time, the Queen had been regarded as highly unpalatable to its vertebrate (mainly avian) predators. This is due to the fact that the Queen, like its cousin the [[Monarch butterfly|Monarch]], feeds largely on Asclepiads. As the Queen and the Monarch are closely related, it was assumed that the Queen also possesses the ability to effectively sequester and store [[cardenolides]] present in [[milkweeds]].<ref name="new 3">{{cite journal|last=Ritland|first=David B.|title=Variation in Palatability of Queen Butterflies (Danaus Gilippus) and Implications Regarding Mimicry|journal=Ecology|date=Apr 1994|volume=75|issue=3|pages=732–746|accessdate=25 October 2013|doi=10.2307/1941731}}</ref> As such, the Queen and the [[Viceroy (butterfly)|Florida Viceroy]] was long regarded a classic model-mimic example of [[Batesian mimicry]], similar to the relationship exhibited by the Monarch and the Viceroy.<ref name="new 1">{{cite journal|last=van Zandt Brower|first=Jane|title=Experimental Studies of Mimicry in Some North American Butterflies. Part III. Danaus gilippus berenice and Limenitis archippus floridensis|journal=Evolution|date=September 1958|volume=12|issue=3|pages=273–285|accessdate=25 October 2013|doi=10.2307/2405851}}</ref> |
||
However, the unexpected failure of birds to reject successive Queens in an experimental setting<ref name="new 1" /> called into question the legitimacy of this relationship. In fact, experimental evidence suggested that Florida Viceroys could be significantly more unpalatable than representative Queens. Because experimental evidence showed sampled queens were significantly less distasteful than viceroy, it was purported that Florida Viceroys and Queens were [[Müllerian mimicry|Müllerian]] co-mimics.<ref name="new 4">{{cite journal|last=Ritland|first=David B.|title=Unpalatability of viceroy butterflies (Limenitis archippus) and their purported mimicry models, Florida queens (Danaus gilippus)|journal=Oecologia|date=September 1991|volume=88|issue=1|pages=102–108|accessdate=25 October 2013}}</ref> Furthermore, evidence from this study led to the hypothesis that the Queen actually enjoys an asymmetric mimicry relationship, gaining an advantage from flying in the company of the relatively more unpalatable Viceroy.<ref name="new 4" /> |
However, the unexpected failure of birds to reject successive Queens in an experimental setting<ref name="new 1" /> called into question the legitimacy of this relationship. In fact, experimental evidence suggested that Florida Viceroys could be significantly more unpalatable than representative Queens. Because experimental evidence showed sampled queens were significantly less distasteful than viceroy, it was purported that Florida Viceroys and Queens were [[Müllerian mimicry|Müllerian]] co-mimics.<ref name="new 4">{{cite journal|last=Ritland|first=David B.|title=Unpalatability of viceroy butterflies (Limenitis archippus) and their purported mimicry models, Florida queens (Danaus gilippus)|journal=Oecologia|date=September 1991|volume=88|issue=1|pages=102–108|accessdate=25 October 2013|doi=10.1007/bf00328409}}</ref> Furthermore, evidence from this study led to the hypothesis that the Queen actually enjoys an asymmetric mimicry relationship, gaining an advantage from flying in the company of the relatively more unpalatable Viceroy.<ref name="new 4" /> |
||
====Palatability spectrum==== |
====Palatability spectrum==== |
||
Line 108: | Line 108: | ||
====Pheromone==== |
====Pheromone==== |
||
The chemicals that comprise the pheromone are secreted by trichogen cells, which are located at the base of each hair-pencil. This liquid secretion moves from these cells, through the [[cuticle]] of the hairs, to coat the numerous free, cuticular dust particles that adhere to the hair-pencil surface.<ref name="new 11">{{cite journal|last=Pliske|first=TE|coauthors=Salpeter, MM|title=The structure and development of the hairpencil glands in males of the Queen butterfly, Danaus gilippus berenice.|journal=Journal of morphology|date=June 1971|volume=134|issue=2|pages=215–42|pmid=5135654}}</ref> Two of the chemicals that comprise this secretion have been identified – a crystalline pyrrolizidinone ([[ketone]]) and a viscous [[terpenoid]] alcohol (diol).<ref name="new 8">{{cite journal|last=Schneider|first=D.|coauthors=Seibt, U.|title=Sex Pheromone of the Queen Bufferfly: Electroantennogram Responses|journal=Science|date=6 June 1969|volume=164|issue=3884|pages=1173–1174|doi=10.1126/science.164.3884.1173}}</ref> The diol imparts a stickiness that allows the secretion to stay on the dust, and the dust on antennae. The ketone is a releaser pheromone, inducing females to mate. Although insufficient levels of ketone present in the dust particle correlates to lower seductive capacity in the male,<ref name="new 7" /> some males with low levels of ketone – and even some without hair-pencils – have been known to mate successfully with females. This suggests that although hair-pencil pheromones are of major importance, they are not absolutely essential to mating.<ref name="new 6" /> |
The chemicals that comprise the pheromone are secreted by trichogen cells, which are located at the base of each hair-pencil. This liquid secretion moves from these cells, through the [[cuticle]] of the hairs, to coat the numerous free, cuticular dust particles that adhere to the hair-pencil surface.<ref name="new 11">{{cite journal|last=Pliske|first=TE|coauthors=Salpeter, MM|title=The structure and development of the hairpencil glands in males of the Queen butterfly, Danaus gilippus berenice.|journal=Journal of morphology|date=June 1971|volume=134|issue=2|pages=215–42|pmid=5135654|doi=10.1002/jmor.1051340206}}</ref> Two of the chemicals that comprise this secretion have been identified – a crystalline pyrrolizidinone ([[ketone]]) and a viscous [[terpenoid]] alcohol (diol).<ref name="new 8">{{cite journal|last=Schneider|first=D.|coauthors=Seibt, U.|title=Sex Pheromone of the Queen Bufferfly: Electroantennogram Responses|journal=Science|date=6 June 1969|volume=164|issue=3884|pages=1173–1174|doi=10.1126/science.164.3884.1173}}</ref> The diol imparts a stickiness that allows the secretion to stay on the dust, and the dust on antennae. The ketone is a releaser pheromone, inducing females to mate. Although insufficient levels of ketone present in the dust particle correlates to lower seductive capacity in the male,<ref name="new 7" /> some males with low levels of ketone – and even some without hair-pencils – have been known to mate successfully with females. This suggests that although hair-pencil pheromones are of major importance, they are not absolutely essential to mating.<ref name="new 6" /> |
||
====Importance of hair-pencils==== |
====Importance of hair-pencils==== |
||
Line 114: | Line 114: | ||
Many butterflies possess extrusible brushlike structures, called hair-pencils. In the Queen, the hair-pencils, which are present in the posterior [[abdomen]] in the male, are tucked away when the male is not interacting with the female.<ref name="new 7" /> As such, these [[organs]] are thought to serve as important tools for [[pheromone]] dissemination during courtship.<ref name="new 7" /> |
Many butterflies possess extrusible brushlike structures, called hair-pencils. In the Queen, the hair-pencils, which are present in the posterior [[abdomen]] in the male, are tucked away when the male is not interacting with the female.<ref name="new 7" /> As such, these [[organs]] are thought to serve as important tools for [[pheromone]] dissemination during courtship.<ref name="new 7" /> |
||
Hair-pencils play an important role in courtship success. Although the lack of hair-pencils does not affect the rate at and enthusiasm with which males pursue females, males without hair-pencils experience significantly lower success in achieving copulation. Male Queen butterlies with physically normal but chemically deficient hair-pencils also suffer from lower mating success.<ref name="new 6">{{cite journal|last=Myers|first=Judith|coauthors=Brower, Lincoln P.|title=A behavioural analysis of the courtship pheromone receptors of the Queen butterfly, Danaus gilippus berenice|journal=Journal of Insect Physiology|date=November 1969|volume=15|issue=11|pages=2117–2120|accessdate=25 October 2013}}</ref> In addition, adult female Queens whose antennae have been blocked are not receptive to advances from competent male Queens. However, physical contact between the male’s hair-pencil and the female’s antennae does not affect a male’s mating success.<ref name="new 6" /> It is important to note that males without hair-pencils are no less [[fertile]] than males with hair-pencils.<ref name="new 6" /> |
Hair-pencils play an important role in courtship success. Although the lack of hair-pencils does not affect the rate at and enthusiasm with which males pursue females, males without hair-pencils experience significantly lower success in achieving copulation. Male Queen butterlies with physically normal but chemically deficient hair-pencils also suffer from lower mating success.<ref name="new 6">{{cite journal|last=Myers|first=Judith|coauthors=Brower, Lincoln P.|title=A behavioural analysis of the courtship pheromone receptors of the Queen butterfly, Danaus gilippus berenice|journal=Journal of Insect Physiology|date=November 1969|volume=15|issue=11|pages=2117–2120|accessdate=25 October 2013|doi=10.1016/0022-1910(69)90078-x}}</ref> In addition, adult female Queens whose antennae have been blocked are not receptive to advances from competent male Queens. However, physical contact between the male’s hair-pencil and the female’s antennae does not affect a male’s mating success.<ref name="new 6" /> It is important to note that males without hair-pencils are no less [[fertile]] than males with hair-pencils.<ref name="new 6" /> |
||
That fact that actively hair-pencilling males emit a very definite odor that can even be perceived by humans also supports the idea that it is not the hair-pencil itself that is important in courtship, but rather, the pheromone which the hair-pencil transports.<ref name="new 6" /> |
That fact that actively hair-pencilling males emit a very definite odor that can even be perceived by humans also supports the idea that it is not the hair-pencil itself that is important in courtship, but rather, the pheromone which the hair-pencil transports.<ref name="new 6" /> |
Revision as of 21:21, 23 May 2014
Queen | |
---|---|
Scientific classification | |
Kingdom: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Tribe: | |
Genus: | |
Species: | D. gilippus
|
Binomial name | |
Danaus gilippus (Cramer, 1775)
|
The Queen Butterfly (Danaus gilippus) is a North and South American butterfly in the family Nymphalidae with a wingspan of 70–88 mm (2.8–3.5 in).[2] It is orange or brown with black wing borders and small white forewing spots on its dorsal wing surface, and reddish ventral wing surface fairly similar to the dorsal surface. The ventral hindwings have black veins and small white spots in a black border. The male has a black androconial scent patch on its dorsal hindwings.[3] It is found throughout the tropics and into the temperate regions of the Americas, Asia and Africa. It can be found in a variety of locations: depending on its habitat location, the butterfly can be found in meadows, fields, marshes, deserts, and at the edges of forests.[3][4]
This species is possibly a close relative to the similarly colored Soldier Butterfly (or "Tropic Queen"; Danaus eresimus); in any case, it is not close to the Plain Tiger (Danaus chrysippus) as was long believed. There are seven subspecies.[5]
Females lay one egg at a time on larval host plants.[3] Larvae use these plants as a food source,[6] whereas adult butterflies feed mainly on nectar from flowers.[7] Unpalatability to avian predators is a feature of the butterfly; however, its level is highly variable. Unpalatability is correlated with the level of cardenolides obtained via the larval diet, but other compounds like alkaloids also play a part in promoting distastefulness.[8][9]
Males patrol to search for females, who may mate up to 15 times a day.[3] Male organs called hair-pencils play an important role in courtship, with males with lower hair-pencil levels being selected against.[10] These hair-pencils may be involved in releasing pheromones during courtship that could attract female mates.[11]
Taxonomy
The Queen is a member of the genus Danaus, which includes D. plexippus and D. eresimus. It is of the family Nymphalidae of the order Lepidoptera.[12] There are seven subspecies. It is a native of the nearctic and neotropical ecozones.[5] The conservation status of this species is secure, with no reported management needs.[13]
Life Cycle and Morphology
Females lay small white eggs one at a time on larval host plants, usually members of the milkweed subfamily Asclepiadoideae. The egg hatches into a black caterpillar with transverse white stripes and yellow spots, and three pairs of long, black filaments. The caterpillar feeds on the host plant and sequesters chemicals that make it distasteful to some predators. It then goes through six instars, after which the larva finds a suitable spot to pupate. The adult emerges 7 to 10 days afterwards. The Queen Butterfly has multiple generations a year.[3]
Egg
The Queen butterfly oviposits one egg at a time. Each individual egg can be found on leaves, stems, and flower buds of the host.[2] The eggs are usually pale green, but may also be white.[2] It has an ovate conical in shape, a flattened base and slightly truncated top, and is ribbed perpendicularly with raised cross-lines between the ridges.[4][14] Compared to that of the Monarch Butterfly, the egg of the Queen Butterfly is taller relative to its width.[6]
Caterpillar
Comparatively, the mature Queen caterpillar is darker and not as brightly colored as the Monarch.[3]
In the larval stage, the Queen is a bluish-white, with a reddish-brown underside.[2] It has two pairs of black, fleshy
tentacles—one is on the second thoracic segment and the other on the eighth abdominal segment[14][15]—but lacks spines.[2] When mature, the caterpillar is brown with purplish prolegs. The caterpillar has been observed in the following transverse stripes: blue, green, yellow, white, and blackish brown.[3] The head is black with white rings.[6] There is no hair on the body of the caterpillar.[14]
Pupa
The pupa is relatively short and thick, tapering rapidly at the end of the abdomen.[4][14] It is pale green, rarely pale pink, and is frequently ornamented with golden spots.[14] A black transverse band edged with gold is on the abdomen.[2] Below this black abdominal band lies another one in blue.[16] The pupa has very few projections; most notably, it is suspended by a long cremaster from a button of silk.[14] As such, the pupa resembles a pendant.[16]
In general, the pupa of the Queen is more slender than that of the Monarch.[6]
Butterfly
As an adult, the Queen has two cousins to which it bears a striking resemblance: the more popular Monarch (Danus plexippus) and the Soldier (Danaus eresimus tethys).
The Queen is a moderately large butterfly. It can have an average wingspan of 3.1 inches (7.9 cm) to 3.3 inches (8.4 cm). It is easily distinguishable from its cousin, the Monarch, by its darker brown ground color.[4][17] The Queen bears a closer resemblance to its other cousin, the Soldier (Danaus Eresimus Tethys).[16] It boasts a very tough and flexible chitinous exoskeleton, unlike most other butterflies.[3]
Wing color varies from bright, fulvous brown to rich chocolate, with black marginal bands that are dotted with white or yellow. The underside of the wing is designed much like the upper wing, except it is more pale.[3] The Queen has less prominent veins on its wings and lacks the darker, apical shading found in Monarchs.[4] The forewing is generally much larger than the rounded hind wing.[14]
Both sexes are morphologically similar. The male and the female’s forewing lengths range from 3.7 centimetres (1.5 in) to 4.6 centimetres (1.8 in), with the mean length equaling 4.2 centimetres (1.7 in).[16] The antennae lack scales.[2] Although all danaids have two pairs of walking legs, the forelegs, the first pair located on the prothoracic segment of the abdomen, is stunted and of little use.[3] The forelegs are more atrophied in the male than in the female.[14] The female uses her short forelegs to scratch the surfaces of leaves to determine which ones are suitable hosts for her eggs.[3] On both sexes, only the atrophied forelegs lack claws.[14]
However, the male Queen has a specialized patch of androconia, or a scent-pouch covered in scales, located on its dorsal hind wing.[3][14][16][18] The position and structure of androconia is used to identify between genera. The male also has one reversibly extensible hair-pencil on each side of his abdomen.[6] Hair-pencils, when in contact with these scales, disseminate pheromones near the female at integral stages of successful courtship.[6][7]
Distribution and habitat
The Queen belongs to a family (Danaidae) that is common to both New and Old Worlds, specifically found throughout the tropics and into the temperate regions of the Americas, Asia, and Africa. Stray specimens are found in Europe.[3] The Queen is chiefly a tropical species. In the US, it is usually confined to the southern portion of the country. It can be found regularly in peninsular Florida and southern Georgia, as well as in the southern portions of Texas, California, and other states bordering on Mexico.[16] Occasionally, the subspecies of the Queen can be found somewhat north, in Kansas, Colorado, and Utah.[3] Periodically, a stray may be found in the Midwest, such as in Missouri.[15] The berenice subspecies is found largely in the Southeast and the strigosus in the Southwest.[2] The Queen is also found in Cuba.[4]
It is more common in southern Central America, with numbers beginning to rise in Mexico.[3] The Queen can be found as far south as Argentina.[6] Although the Queen does not undertake dramatic migrations like the Monarch, most undertake short-distance travel at tropical latitudes in areas that have a distinct dry season. During those periods, the Queen will fly from lowlands to high elevations.[16]
Throughout its distribution, the Queen can be found on open land, in meadows, fields, and marshes. It displays a more xeric preference in Hispaniola and will fly to the edge of, but seldom penetrate, hammocks and forests.[6] In the southern US, the Queen prefers open woodland, fields, and desert.[2] Most likely they are found wherever milkweeds grow.[3]
Food sources and host plants
Larval host plants and food sources
The Queen larvae feed on Apocynaceae (Milkweeds and dogbanes).[4] It can survive on a number of hosts. Common plants include Butterflyweed (Asclepias tuberosa) and bloodflower (Asclepias curassavica). In the West Indies, blunt-leaved milkweed (Asclepias amplexicaulis) and honey vine (Cynanchum laeve) is favored. The caterpillar has also been observed on Asclepias nivea, Calotropis procea, and Apocynaceae nerium.[6][16] Other reported host genera include the Apocynum, Gonolobus, Sarcostemma, and Stapelia.[16]
Adult food sources and host plants
As an adult, its feeding habits are less specific. The butterfly feeds predominantly on nectar from flowers and dead foliage, but can also feed on rotting fruit, sweat, and dry or wet dung, among other substances.[7]
Even as an adult, the Queen is drawn to milkweeds (Apocynaceae).[4] However, the butterfly is also attracted to the Nerium, Funastrum, Vincetoxicum, Philabertia, Stapelia.[3]
In addition to the above food sources, males are attracted to Heliotropium, Eupatorium, Senecio, and Crotalaria, plants known to contain the alkaloid lycopsamine. The alkaloid and other precursor compounds from these plants are used to create pheromones used to attract mates.[2] Pheromone precursors are predominantly obtained from Boraginaceae, Asteraceae, and Fabaceae.[18]
Defense
The Queen is one of many insects that derives chemical defenses against its predators from its food plant. Most of the toxic cardenolides that make queens so unpalatable to its predators are sequestered from larval host plants.[19]
Mimicry in cardenolide-derived defense
For quite some time, the Queen had been regarded as highly unpalatable to its vertebrate (mainly avian) predators. This is due to the fact that the Queen, like its cousin the Monarch, feeds largely on Asclepiads. As the Queen and the Monarch are closely related, it was assumed that the Queen also possesses the ability to effectively sequester and store cardenolides present in milkweeds.[8] As such, the Queen and the Florida Viceroy was long regarded a classic model-mimic example of Batesian mimicry, similar to the relationship exhibited by the Monarch and the Viceroy.[9]
However, the unexpected failure of birds to reject successive Queens in an experimental setting[9] called into question the legitimacy of this relationship. In fact, experimental evidence suggested that Florida Viceroys could be significantly more unpalatable than representative Queens. Because experimental evidence showed sampled queens were significantly less distasteful than viceroy, it was purported that Florida Viceroys and Queens were Müllerian co-mimics.[20] Furthermore, evidence from this study led to the hypothesis that the Queen actually enjoys an asymmetric mimicry relationship, gaining an advantage from flying in the company of the relatively more unpalatable Viceroy.[20]
Palatability spectrum
Further experimentation suggested that chemical defense of queens is highly labile. It was shown that Queens reared on the high-cardenolide A. curassavica sequester and store levels of cardenolides similar to those found in monarchs.[8] These butterflies were regarded as very distasteful and were largely rejected by avian predators. Furthermore, those that were eaten elicited high rates of distress behavior. However, Queens reared on S. clausum, a larval host plant known to be a very poor cardenolide source, contain no detectable cardenolide and are essentially palatable to predators.[19] These highly variable responses of avian predators to queens reared on different plants suggest the existence of a food-plant-related palatability spectrum in Florida Queen butterflies.[8]
Micro-geographic differences in the environment lead to variation in the dynamics of mimetic relationships even at a local level.[21] Spatiotemporal variation throughout different ecozones lead to large differences in unpalatability of queens separated by only a few kilometers. This extensive variation supports the idea that automimicy occurs at the intrapopulation level – palatable queens mimic individuals that have higher cardenolide content. By extension, interspecific mimicry is also highly variable. At hydric inland sites, which contain large numbers of A. curassavica, Queens and Viceroys are distasteful Müllerian mimics of one another, while at coastal sites queens probably serve as the palatable Batesian mimics of Viceroys.[21]
Noncardenolide-derived defense
Queen unpalatability does not directly mirror either food plant or butterfly cardenolide content.[8] Evidence suggests that the interaction of cardenolides and noncardenolides are utilized for chemical defenses in milkweed butterflies.
Wild queens that fed upon S. clausum as larvae but had access to adult-obtained compounds, such as the pyrrolizidine alkaloids (PAs) used for pheromone production, were observed to be significantly less palatable to avian predators than butterflies without chemical defenses.[19] As such, these alkaloids, which are known to deter spider predators, may make a substantial contribution to Queen distastefulness.
Mating
Males patrol all day to seek females. Females can mate up to 15 times, a significantly higher number than other members of Lepidoptera.[2] Courtship and mating typically happen in the afternoon. Once a male and a female mate, the butterflies may remain coupled for more than an hour. Mated pairs often rest on foliage high up in a tree. Later, the female will fly closer to the ground than normal to find a suitable host for egg deposition.[16]
Courtship
During courtship, which occurs while both butterflies are in flight, the male everts his hair-pencils and brushes them against the female’s antennae. This act is called "hair-pencilling." The secretion associated with these hair-pencils plays an important role in seducing the female.[22] When the female comes to rest, the male hovers closely above her and subjects her to further “hair-pencilling” before alighting next to the female and copulating with her.[23] Afterwards, the two engage in a postnuptial flight - the male flies with the female dangling beneath him.[2]
Pheromone
The chemicals that comprise the pheromone are secreted by trichogen cells, which are located at the base of each hair-pencil. This liquid secretion moves from these cells, through the cuticle of the hairs, to coat the numerous free, cuticular dust particles that adhere to the hair-pencil surface.[24] Two of the chemicals that comprise this secretion have been identified – a crystalline pyrrolizidinone (ketone) and a viscous terpenoid alcohol (diol).[11] The diol imparts a stickiness that allows the secretion to stay on the dust, and the dust on antennae. The ketone is a releaser pheromone, inducing females to mate. Although insufficient levels of ketone present in the dust particle correlates to lower seductive capacity in the male,[23] some males with low levels of ketone – and even some without hair-pencils – have been known to mate successfully with females. This suggests that although hair-pencil pheromones are of major importance, they are not absolutely essential to mating.[10]
Importance of hair-pencils
Many butterflies possess extrusible brushlike structures, called hair-pencils. In the Queen, the hair-pencils, which are present in the posterior abdomen in the male, are tucked away when the male is not interacting with the female.[23] As such, these organs are thought to serve as important tools for pheromone dissemination during courtship.[23]
Hair-pencils play an important role in courtship success. Although the lack of hair-pencils does not affect the rate at and enthusiasm with which males pursue females, males without hair-pencils experience significantly lower success in achieving copulation. Male Queen butterlies with physically normal but chemically deficient hair-pencils also suffer from lower mating success.[10] In addition, adult female Queens whose antennae have been blocked are not receptive to advances from competent male Queens. However, physical contact between the male’s hair-pencil and the female’s antennae does not affect a male’s mating success.[10] It is important to note that males without hair-pencils are no less fertile than males with hair-pencils.[10]
That fact that actively hair-pencilling males emit a very definite odor that can even be perceived by humans also supports the idea that it is not the hair-pencil itself that is important in courtship, but rather, the pheromone which the hair-pencil transports.[10]
Image gallery
-
Caterpillar on a milkweed plant
-
Adult showing underside of wings
-
Adult resting on a flower
-
Adult feeding on milkweed plant
-
Adult feeding on milkweed flower
-
Adult - note the androconial scent patches, found only on males
References
- ^ Opler, P. A. (2002). "Danaus gilippus". Retrieved 12 July 2013.
{{cite web}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b c d e f g h i j k l Scott, James A. (1997). The Butterflies of North America. Stanford, California: Stanford University Press. pp. 228–232.
- ^ a b c d e f g h i j k l m n o p q Howe, William H. (1975). The Butterflies of North America. Garden City, New York: Doubleday & Company, Inc. pp. 75–77.
- ^ a b c d e f g h Klots, Alexander B. (1951). A Field Guide to the Butterflies of North America, East of the Great Plains. Cambridge, Massachusetts: The Riverside Press. pp. 77–79.
- ^ a b "Danaus gilippus". Encyclopedia of Life. Retrieved 22 November 2013.
- ^ a b c d e f g h i Miller, David Spencer Smith; Lee D. Miller; Jacqueline Y. (1994). The butterflies of the West Indies and South Florida. Oxford ;New York, NY ;Tokyo: Oxford Univ. Pr. pp. 37, 40. ISBN 0-19-857199-2.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ a b c New, T.R. (1997). Butterfly Conservation. Melbourne: Oxford University Press. pp. 15–16, 27, 45.
- ^ a b c d e Ritland, David B. (Apr 1994). "Variation in Palatability of Queen Butterflies (Danaus Gilippus) and Implications Regarding Mimicry". Ecology. 75 (3): 732–746. doi:10.2307/1941731.
{{cite journal}}
:|access-date=
requires|url=
(help) - ^ a b c van Zandt Brower, Jane (September 1958). "Experimental Studies of Mimicry in Some North American Butterflies. Part III. Danaus gilippus berenice and Limenitis archippus floridensis". Evolution. 12 (3): 273–285. doi:10.2307/2405851.
{{cite journal}}
:|access-date=
requires|url=
(help) - ^ a b c d e f Myers, Judith (November 1969). "A behavioural analysis of the courtship pheromone receptors of the Queen butterfly, Danaus gilippus berenice". Journal of Insect Physiology. 15 (11): 2117–2120. doi:10.1016/0022-1910(69)90078-x.
{{cite journal}}
:|access-date=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b Schneider, D. (6 June 1969). "Sex Pheromone of the Queen Bufferfly: Electroantennogram Responses". Science. 164 (3884): 1173–1174. doi:10.1126/science.164.3884.1173.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ "Danaus gilippus (Cramer, 1775)". The Integrated Taxonomic Information System (ITIS). Retrieved 22 November 2013.
- ^ Opler, Paul A. "Attributes of Danaus gilippus". Butterflies and Moths of North America.
{{cite web}}
:|access-date=
requires|url=
(help); Missing or empty|url=
(help) - ^ a b c d e f g h i j Holland, W.J. (1931). The Butterfly Book. Garden City, New York: Doubleday, Doran & Company, Inc. pp. 66–69.
- ^ a b editors, J. Richard and Joan E. Heitzman ; Jim Rathert, principal photographer ; Kathy Love and LuAnne Larsen, (1996). Butterflies and moths of Missouri. Jefferson City, MO: Missouri Dept. of Conservation. pp. 197, 199. ISBN 1-887247-06-8.
{{cite book}}
:|last=
has generic name (help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ a b c d e f g h i j Krizek, Paul A. Opler ; George O. (1984). Butterflies : east of the Great Plains : an ill. natural history. Baltimore u.a.: Johns Hopkins Univ. Pr. ISBN 0-8018-2938-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ Douglas, Matthew M. (1986). The lives of butterflies. Ann Arbor: University of Michigan Press. ISBN 0-472-10078-5.
- ^ a b Scoble, Malcolm J. (1995). The Lepidoptera : form, function and diversity (Repr. (with corr.). ed.). Oxford [u.a.]: Natural History Museum [u.a.] ISBN 0-19-854952-0.
{{cite book}}
: no-break space character in|title=
at position 16 (help) - ^ a b c Ritland, David B. (August 1991). "Palatability of aposematic queen butterflies (Danaus gilippus) feeding onSarcostemma clausum (Asclepiadaceae) in Florida". Journal of Chemical Ecology. 17 (8): 1593–1610. doi:10.1007/bf00984691.
{{cite journal}}
:|access-date=
requires|url=
(help) - ^ a b Ritland, David B. (September 1991). "Unpalatability of viceroy butterflies (Limenitis archippus) and their purported mimicry models, Florida queens (Danaus gilippus)". Oecologia. 88 (1): 102–108. doi:10.1007/bf00328409.
{{cite journal}}
:|access-date=
requires|url=
(help) - ^ a b Moranz, Raymond (May 1998). "Geographic and Temporal Variation of Cardenolide-Based Chemical Defenses of Queen Butterfly (Danaus gilippus) in Northern Florida". Journal of Chemical Ecology. 24 (5): 905–932.
{{cite journal}}
:|access-date=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Meinwald, J. (6 June 1969). "Sex Pheromone of the Queen Butterfly: Chemistry". Science. 164 (3884): 1174–1175. doi:10.1126/science.164.3884.1174.
{{cite journal}}
:|access-date=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b c d Pliske, T. E. (6 June 1969). "Sex Pheromone of the Queen Butterfly: Biology". Science. 164 (3884): 1170–1172. doi:10.1126/science.164.3884.1170.
{{cite journal}}
:|access-date=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Pliske, TE (June 1971). "The structure and development of the hairpencil glands in males of the Queen butterfly, Danaus gilippus berenice". Journal of morphology. 134 (2): 215–42. doi:10.1002/jmor.1051340206. PMID 5135654.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
External links
- Queen butterfly movies (Tree of Life)