15-Cis-phytoene desaturase: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎top: clean up using AWB
Antibob (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox enzyme
{{Infobox enzyme
| Name = 15-cis-phytoene desaturase
| Name = 15-''cis''-phytoene desaturase
| EC_number = 1.3.5.5
| EC_number = 1.3.5.5
| CAS_number =
| CAS_number =
| IUBMB_EC_number = 1/3/5/5
| IUBMB_EC_number = 1/3/5/5
| GO_code =
| GO_code =
| image = Oryza-sativa-phytoene-desaturase-PDB-5mog.png
| image =
| width =
| width =
| caption = [[Protein crystallography|Crystallographic]] structure of a phytoene desaturase monomer from rice.<ref name="pmid28669634">{{PDB|5mog}}; {{cite journal | author1 = Brausemann A |author2 = Gemmecker S |author3= Koschmieder J |author4= Ghisla S |author5 = Beyer P |author6= Einsle O | title = Structure of Phytoene Desaturase Provides Insights into Herbicide Binding and Reaction Mechanisms Involved in Carotene Desaturation. | journal = Structure| volume = 25 | issue = 8 | pages = 1222-1232.e3
| caption =
| date = August 2017 | pmid = 28669634 | doi = 10.1016/j.str.2017.06.002 }}</ref>
}}
}}
'''15-Cis-phytoene desaturase''' ({{EC number|1.3.5.5}}, ''phytoene desaturase (ambiguous)'', ''PDS'', ''plant-type phytoene desaturase'') is an [[enzyme]] with [[List of enzymes|systematic name]] ''15-cis-phytoene:plastoquinone oxidoreductase''.<ref>{{cite journal | title = Bleaching herbicide norflurazon inhibits phytoene desaturase by competition with the cofactors |author1 = Breitenbach, J. |author2 =Zhu, C. |author3 =Sandmann, G. |journal = J. Agric. Food Chem. |year = 2001 |volume = 49 |pages = 5270–5272 |pmid = 11714315 |issue=11 |doi=10.1021/jf0106751}}</ref><ref>{{cite journal | title = Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties |author1 = Schneider, C. |author2 =Boger, P. |author3 =Sandmann, G. |journal = Protein Expr. Purif. |year = 1997 |volume = 10 |pages = 175–179 |pmid = 9226712 |doi=10.1006/prep.1997.0730 |issue=2}}</ref><ref>{{cite journal | title = Purification and reactivation of recombinant ''Synechococcus'' phytoene desaturase from an overexpressing strain of ''Escherichia coli'' |author1 = Fraser, P.D. |author2 =Linden, H. |author3 =Sandmann, G. |journal = Biochem. J. |year = 1993 |volume = 291 |pages = 687–692 |pmid = 8489496 |pmc=1132422}}</ref><ref>{{cite journal | title = &zeta;-Carotene ''cis'' isomers as products and substrates in the plant ''poly''-''cis'' carotenoid biosynthetic pathway to lycopene |author1 = Breitenbach, J. |author2 =Sandmann, G. |journal = Planta |year = 2005 |volume = 220 |pages = 785–793 |pmid = 15503129 |doi=10.1007/s00425-004-1395-2}}</ref> This enzyme [[catalysis|catalyses]] the following [[chemical reaction]]
'''15-''cis''-phytoene desaturases''' (''PDS'', ''plant-type phytoene desaturases'') ({{EC number|1.3.5.5}}, ''15-cis-phytoene:plastoquinone oxidoreductase''), are [[enzyme]]s involved in the [[carotenoid]] biosynthesis in [[plant]]s and [[cyanobacteria]].<ref>{{cite journal | title = Purification and reactivation of recombinant ''Synechococcus'' phytoene desaturase from an overexpressing strain of ''Escherichia coli'' |author1 = Fraser, P.D. |author2 =Linden, H. |author3 =Sandmann, G. |journal = Biochem. J. |year = 1993 |volume = 291 |pages = 687–692 |pmid = 8489496 |pmc=1132422}}</ref> PDS introduces two double bonds into its colorless substrate [[phytoene]] by [[dehydrogenation]] and [[isomerization|isomerizes]] two additional double bonds.<ref>{{cite journal | title = Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties |author1 = Schneider, C. |author2 =Boger, P. |author3 =Sandmann, G. |journal = Protein Expr. Purif. |year = 1997 |volume = 10 |pages = 175–179 |pmid = 9226712 |doi=10.1006/prep.1997.0730 |issue=2}}</ref><ref>{{cite journal | title = &zeta;-Carotene ''cis'' isomers as products and substrates in the plant ''poly''-''cis'' carotenoid biosynthetic pathway to lycopene |author1 = Breitenbach, J. |author2 =Sandmann, G. |journal = Planta |year = 2005 |volume = 220 |pages = 785–793 |pmid = 15503129 |doi=10.1007/s00425-004-1395-2}}</ref> This reaction starts a biochemical pathway involving three further enzymes ([[Zeta-carotene_isomerase|zeta-carotene isomerase]], [[9,9'-Dicis-zeta-carotene desaturase|zeta-carotene desaturase]] and [[Prolycopene_isomerase|carotene cis-trans isomerase]]) and leading to the red colored [[lycopene]]. The homologous phytoene desaturase found in [[bacteria]] and [[fungi]] ([[Phytoene_desaturase_(lycopene-forming)|CrtI]]) converts phytoene directly to lycopene.


== Biochemistry ==
: 15-cis-phytoene + 2 [[plastoquinone]] <math>\rightleftharpoons</math> 9,15,9'-tricis-zeta-carotene + 2 [[plastoquinol]] (overall reaction)
15-''cis''-phytoene is converted by PDS into 9,15,9'-tri-''cis''-ζ-carotene through reduction of the enzymes non-covalently bound [[FAD]] cofactor. The electrons involved in the reaction are subsequently transferred onto [[plastoquinone]].<ref name="pmid8718624 ">{{cite journal |author1 = Norris SR |author2 = Barrette TR |author3 = DellaPenna D | title = Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. | journal = Plant Cell | volume = 7| issue = 10 | pages = 2139-2149| date = December 1995 | pmid = 8718624 | doi = 10.1105/tpc.7.12.2139 }}</ref> Disruption of this biosynthesis step results in [[Albinism#In_plants|albinism]] and stunted plant growth.<ref name="pmid17486124">{{cite journal |author1 = Qin G |author2 = Gu H |author3 = Ma L |author4 = Peng Y |author5 = Deng XW |author6 = Chen Z |author7 = Qu LJ | title = Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. | journal = Cell Research | volume = 17| issue = 5 | pages = 471-482| date = May 2007 | pmid = 17486124 | doi = 10.1038/cr.2007.40}}</ref>
: (1a) 15-cis-phytoene + plastoquinone <math>\rightleftharpoons</math> 15,9'-dicis-phytofluene + plastoquinol
: (1b) 15,9'-dicis-phytofluene + plastoquinone <math>\rightleftharpoons</math> 9,15,9'-tricis-zeta-carotene + plastoquinol


== Applications ==
This enzyme is involved in [[carotenoid]] biosynthesis in [[plant]]s and [[cyanobacteria]].
Disruption of PDS function can be achieved by bleaching herbicides such as norflurazon<ref>{{cite journal | title = Bleaching herbicide norflurazon inhibits phytoene desaturase by competition with the cofactors |author1 = Breitenbach, J. |author2 =Zhu, C. |author3 =Sandmann, G. |journal = J. Agric. Food Chem. |year = 2001 |volume = 49 |pages = 5270–5272 |pmid = 11714315 |issue=11 |doi=10.1021/jf0106751}}</ref> and [[fluridone]].<ref name="sandmann2002">{{cite book |last1=Sandmann |first1=Gerhard |year=2002 |chapter= 2: Bleaching Herbicides: Action Mechanism in Carotenoid Biosynthesis, Structural Requirements and Engineering of Resistance |editor1-last= Böger |editor1-first=Peter |editor2-last=Wakabayashi |editor2-first=Ko |editor3-last=Hirai |editor3-first=Kenji |title= Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry |edition=1 |publisher=Springer-Verlag Berlin Heidelberg |page=43-57 |isbn=978-3-642-63972-2 |doi=10.1007/978-3-642-59416-8_2 }}</ref> These inhibitors occupy the binding pocket of plastoquinone within the enzyme blocking it from its function.<ref name="pmid28669634"></ref> Due to the clear effect of PDS disruption its gene was targeted in recent studies to showcase successful genome editing using [[CRISPR]]/Cas9 systems.<ref name="pmid27530958 ">{{cite journal |author1 = Nishitani C |author2= Hirai N|author3= Komori S|author4= Wada M|author5= Okada K|author6= Osakabe K|author7= Yamamoto T|author8 =Osakabe Y | title = Efficient Genome Editing in Apple Using a CRISPR/Cas9 system | journal = Scientific Reports | volume = 6| pages = 31481| date = August 2017 | pmid = 27530958 |pmc=PMC4987624| doi = 10.1038/srep31481}}</ref><ref name="pmid28542349">{{cite journal |author1 = Nakajima I|author2= Ban Y|author3= Azuma A|author4= Onoue N|author5= Moriguchi T|author6= Yamamoto T|author7= Toki S|author8= Endo M| title = CRISPR/Cas9-mediated targeted mutagenesis in grape. | journal = PLoS One | volume = 12| issue=5| pages = e0177966| date = May 2017 | pmid = 28542349 |pmc=PMC5436839| doi = 10.1371/journal.pone.0177966}}</ref>
== See also ==
* [[Phytoene desaturase (lycopene-forming)]]
* [[Phytoene desaturase (neurosporene-forming)]]
* [[Phytoene desaturase (zeta-carotene-forming)]]
* [[Phytoene desaturase (3,4-didehydrolycopene-forming)]]


== References ==
== References ==
{{reflist}}
{{reflist|33em}}


== External links ==
== External links ==

Revision as of 14:51, 16 November 2018

15-cis-phytoene desaturase
Crystallographic structure of a phytoene desaturase monomer from rice.[1]
Identifiers
EC no.1.3.5.5
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

15-cis-phytoene desaturases (PDS, plant-type phytoene desaturases) (EC 1.3.5.5, 15-cis-phytoene:plastoquinone oxidoreductase), are enzymes involved in the carotenoid biosynthesis in plants and cyanobacteria.[2] PDS introduces two double bonds into its colorless substrate phytoene by dehydrogenation and isomerizes two additional double bonds.[3][4] This reaction starts a biochemical pathway involving three further enzymes (zeta-carotene isomerase, zeta-carotene desaturase and carotene cis-trans isomerase) and leading to the red colored lycopene. The homologous phytoene desaturase found in bacteria and fungi (CrtI) converts phytoene directly to lycopene.

Biochemistry

15-cis-phytoene is converted by PDS into 9,15,9'-tri-cis-ζ-carotene through reduction of the enzymes non-covalently bound FAD cofactor. The electrons involved in the reaction are subsequently transferred onto plastoquinone.[5] Disruption of this biosynthesis step results in albinism and stunted plant growth.[6]

Applications

Disruption of PDS function can be achieved by bleaching herbicides such as norflurazon[7] and fluridone.[8] These inhibitors occupy the binding pocket of plastoquinone within the enzyme blocking it from its function.[1] Due to the clear effect of PDS disruption its gene was targeted in recent studies to showcase successful genome editing using CRISPR/Cas9 systems.[9][10]

See also

References

  1. ^ a b PDB: 5mog​; Brausemann A; Gemmecker S; Koschmieder J; Ghisla S; Beyer P; Einsle O (August 2017). "Structure of Phytoene Desaturase Provides Insights into Herbicide Binding and Reaction Mechanisms Involved in Carotene Desaturation". Structure. 25 (8): 1222-1232.e3. doi:10.1016/j.str.2017.06.002. PMID 28669634.
  2. ^ Fraser, P.D.; Linden, H.; Sandmann, G. (1993). "Purification and reactivation of recombinant Synechococcus phytoene desaturase from an overexpressing strain of Escherichia coli". Biochem. J. 291: 687–692. PMC 1132422. PMID 8489496.
  3. ^ Schneider, C.; Boger, P.; Sandmann, G. (1997). "Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties". Protein Expr. Purif. 10 (2): 175–179. doi:10.1006/prep.1997.0730. PMID 9226712.
  4. ^ Breitenbach, J.; Sandmann, G. (2005). "ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene". Planta. 220: 785–793. doi:10.1007/s00425-004-1395-2. PMID 15503129.
  5. ^ Norris SR; Barrette TR; DellaPenna D (December 1995). "Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation". Plant Cell. 7 (10): 2139–2149. doi:10.1105/tpc.7.12.2139. PMID 8718624.
  6. ^ Qin G; Gu H; Ma L; Peng Y; Deng XW; Chen Z; Qu LJ (May 2007). "Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis". Cell Research. 17 (5): 471–482. doi:10.1038/cr.2007.40. PMID 17486124.
  7. ^ Breitenbach, J.; Zhu, C.; Sandmann, G. (2001). "Bleaching herbicide norflurazon inhibits phytoene desaturase by competition with the cofactors". J. Agric. Food Chem. 49 (11): 5270–5272. doi:10.1021/jf0106751. PMID 11714315.
  8. ^ Sandmann, Gerhard (2002). "2: Bleaching Herbicides: Action Mechanism in Carotenoid Biosynthesis, Structural Requirements and Engineering of Resistance". In Böger, Peter; Wakabayashi, Ko; Hirai, Kenji (eds.). Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry (1 ed.). Springer-Verlag Berlin Heidelberg. p. 43-57. doi:10.1007/978-3-642-59416-8_2. ISBN 978-3-642-63972-2.
  9. ^ Nishitani C; Hirai N; Komori S; Wada M; Okada K; Osakabe K; Yamamoto T; Osakabe Y (August 2017). "Efficient Genome Editing in Apple Using a CRISPR/Cas9 system". Scientific Reports. 6: 31481. doi:10.1038/srep31481. PMC 4987624. PMID 27530958.{{cite journal}}: CS1 maint: PMC format (link)
  10. ^ Nakajima I; Ban Y; Azuma A; Onoue N; Moriguchi T; Yamamoto T; Toki S; Endo M (May 2017). "CRISPR/Cas9-mediated targeted mutagenesis in grape". PLoS One. 12 (5): e0177966. doi:10.1371/journal.pone.0177966. PMC 5436839. PMID 28542349.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)

External links