Phenylacetaldehyde

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Phenylacetaldehyde
Phenyl ethanal Structure V.1.svg
Identifiers
CAS number 122-78-1 YesY
PubChem 998
ChemSpider 13876539 N
UNII U8J5PLW9MR YesY
Beilstein Reference 385791
Jmol-3D images Image 1
Properties
Molecular formula C8H8O
Molar mass 120.15 g/mol
Appearance Colorless liquid
Density 1.079 g/mL
Melting point −10 °C (14 °F; 263 K)
Boiling point 195 °C (383 °F; 468 K)
Solubility in water 2.210 g/L
Refractive index (nD) 1.526
Hazards
R-phrases R22 R36 R37 R38
S-phrases S26 S36
Main hazards Harmful, Flammable
Flash point 87 °C (189 °F; 360 K)
Related compounds
Related 2-phenyl aldehydes 3,4-Dihydroxyphenylacetaldehyde

Phenylglyoxal

Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Phenylacetaldehyde is an aromatic compound with applications in food science and chemical synthesis.

Natural Occurrence[edit]

Phenylacetaldehyde occurs extensively in nature because it can be biosynthetically derived from the amino acid phenylalanine. Natural sources of the compound include chocolate,[1] buckwheat,[2] flowers, and communication pheromones from various insect orders.[3]

Uses[edit]

Fragrances and flavors[edit]

The aroma of pure substance can be described as honey-like, sweet, rose, green, grassy and is added to fragrances to impart hyacinth, narcissi, or rose nuances.[4] For similar reasons the compound can sometimes be found in flavored cigarettes and beverages.

Historically, before biotechnology approaches were developed, phenylacetaldehyde was also used to produce phenylalanine via the Strecker reaction as a step in the production of aspartame sweetener.[4]

Organic chemistry[edit]

Phenylacetaldehyde is used in the synthesis of polyesters where it serves as a rate-controlling additive during polymerization.[4]

Natural Medicine[edit]

It is also responsible for the antibiotic activity of maggot therapy.[5]

Chemical synthesis[edit]

Phenylacetaldehyde can be obtained via many synthetic routes. Notable examples include:

Reactivity[edit]

Phenylacetaldehyde is often contaminated with polystyrene oxide polymer because of the especial lability of the benzylic alpha proton and the reactivity of the aldehyde. Aldol condensation of the initial dimer gives rise to a range of Michael acceptors and donors.

References[edit]

  1. ^ Schnermann, Petra; Schieberle, Peter (1997). "Evaluation of Key Odorants in Milk Chocolate and Cocoa Mass by Aroma Extract Dilution Analyses". Journal of Agricultural and Food Chemistry 45 (3): 867–872. doi:10.1021/jf960670h. 
  2. ^ Janes D, Kantar D, Kreft S, Prosen H (2009). "Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS". Food Chemistry 112 (1): 120–124. doi:10.1016/j.foodchem.2008.05.048. 
  3. ^ El-Sayed, Ashraf. "Semiochemical-2-phenylacetaldehyde". The Pherobase: Database of Insect Pheromones and Semiochemicals. Extensive Database of Insect Pheromones and Semiochemicals. Retrieved 26 November 2014. 
  4. ^ a b c d Kohlpaintner, Christian; Schulte, Markus; Jürgen, Falbe; Lappe, Peter; Jürgen, Weber; Frey, Guido (2014). "Aldehydes, Araliphatic". Ullmann's Encyclopedia of Industrial Chemistry 1. doi:10.1002/14356007.mo1_mo3.pub2. ISBN 9783527334773. 
  5. ^ Pavillard, E.R.; Wright, E. A. (1957). "An Antibiotic from Maggots". Nature 180: 916–917. doi:10.1038/180916b0. 
  6. ^ Weerman, R.A. (1913). "Einwirkung von Natriumhypochlorit auf Amide ungesättigter Säuren". Justus Liebigs Annalen der Chemie 401 (1): 1–20. doi:10.1002/jlac.19134010102. 
  7. ^ Adams, Rodger (1946). Organic Reactions Volume III. Newyork: John Wiley and Sons Inc. pp. 275, 276, & 285. ISBN 9780471005285. Retrieved 15 June 2014. 
  8. ^ Reppe, Walter; Schlichting, Otto; Klager, Karl; Toepel, Tim (1948). "Cyclisierende Polymerisation von Acetylen I Über Cyclooctatetraen". Justus Liebigs Annalen der Chemie 560 (1): 1–92. doi:10.1002/jlac.19485600102. 
  9. ^ Kunichika, Sango (1953). "Cyclopolyolefins Derived from Acetylene". Bulletin of the Institute for Chemical Research, Kyoto University 31 (5): 323–335. 
  10. ^ Schonberg, Alexander; Radwan, Moubacher (1952). "The Strecker Degradation of α-Amino Acids". Chemical Reviews 52 (2): 261-277. doi:10.1021/cr60156a002.