Pyruvate synthase

From Wikipedia, the free encyclopedia
Jump to: navigation, search
pyruvate synthase
Identifiers
EC number 1.2.7.1
CAS number 9082-51-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO

In enzymology, a pyruvate synthase (EC 1.2.7.1) is an enzyme that catalyzes the interconversion of pyruvate and acetyl-CoA. It is also called pyruvate:ferredoxin oxidoreductase (PFOR).

The relevant equilibrium catalysed by PFOR is:

pyruvate + CoA + 2 oxidized ferredoxin \rightleftharpoons acetyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+

The 3 substrates of this enzyme are pyruvate, CoA, and oxidized ferredoxin, whereas its 4 products are acetyl-CoA, CO2, reduced ferredoxin, and H+.

Function[edit]

This enzyme participates in 4 metabolic pathways: pyruvate metabolism, propanoate metabolism, butanoate metabolism, and reductive carboxylate cycle (CO
2
fixation).

Its major role is the extraction of reducing equivalents by the decarboxylation. In aerobic organisms, this conversion is catalysed by pyruvate dehydrogenase, also uses thiamine pyrophosphate but relies on lipoate as the electron acceptor. Unlike the aerobic enzyme complex PFOR transfers reducing equivalents to flavins or iron-sulflur clusters. This process links glycolysis to the Wood–Ljungdahl pathway.

Nomenclature[edit]

This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with an iron-sulfur protein as acceptor. The systematic name of this enzyme class is pyruvate:ferredoxin 2-oxidoreductase (CoA-acetylating). Other names in common use include:

  • pyruvate oxidoreductase,
  • pyruvate synthetase,
  • pyruvate:ferredoxin oxidoreductase, and
  • pyruvic-ferredoxin oxidoreductase.

Inhibitors[edit]

Amixicile is a potent inhibitor of pyruvate ferredoxin oxidoreductase and is in pre-clinical studies to treat infections of Helicobacter pylori and Clostridium difficile.[1]

References[edit]

  1. ^ Warren CA, van Opstal E, Ballard TE, Kennedy A, Wang X, Riggins M, Olekhnovich I, Warthan M, Kolling GL, Guerrant RL, Macdonald TL, Hoffman PS (August 2012). "Amixicile, a novel inhibitor of pyruvate: ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model". Antimicrob. Agents Chemother. 56 (8): 4103–11. doi:10.1128/AAC.00360-12. PMC 3421617. PMID 22585229. 

Further reading[edit]