Radeon HD 2000 Series

From Wikipedia, the free encyclopedia
Jump to: navigation, search
ATi Radeon HD 2000 Series
Release date 2006
Codename Radeon R600 series
Architecture Radeon R600
Fabrication process and transistors 180M 65nm (RV610)
  • 390M 65nm (RV630)
  • 700M 80nm (R600)
Cards
Entry-level 2350, 2400
Mid-range 2600
High-end 2900
Rendering support
Direct3D Direct3D 10.0
Shader Model 4.0
OpenCL not implemented
OpenGL OpenGL 3.3
History
Predecessor Radeon X1000 Series
Successor Radeon HD 3000 Series

The graphics processing unit (GPU) codenamed the Radeon R600 is the foundation of the Radeon HD 2000 series and the FireGL 2007 series video cards developed by ATI Technologies. The HD 2000 cards competed with nVidia's GeForce 8000 series, while the HD 3000 cards competed against the GeForce 9 series.


Architecture[edit]

This article is about all products under the brand "Radeon HD 2000 Series". All products contain a GPU which implements TeraScale (microarchitecture) version 1, ATI's first Unified shader model microarchitecture. Such GPUs have the capability do calculate only single-precision floating-point format.

Video acceleration[edit]

When Radeon HD 2900 was first released, there was much confusion as to whether or not the product included dedicated video processor hardware, due in part to statements that it supported the software program AVIVO HD. Many reviewers and subsequent readers/consumers interpreted this as meaning the HD 2900 incorporated the same UVD hardware as found in the HD 2400 and HD 2600 series, despite some sites noting this difference at launch time,[1] weeks before the issue first gained traction as a result of a TechReport article.[2] This confusion and subsequent discussions prompted AMD to make a formal statement designed to clarify exactly what UVD was available in which models.[3][4] The HD 2900 XT video playback capabilities are similar to those of the previous X1000 cards with AVIVO capabilities.

It should be noted that several products, branded the Mobility Radeon X2000 series, are in fact based on the older R520 architecture and spotting the support of DirectX 9.0c only and do not have UVD on die.

The Unified Video Decoder (UVD) SIP core was present on the dies of the GPUs used in the HD 2400 and the HD 2600. The HD 2900 did not have a UVD SIP block, but instead were regarded that powerful, that the computing of the video decoding was done on the 3D engine. This approach also exonerates the CPU from doing these computations, but consumes considerably more electrical current.

Other features[edit]

All video cards except the Radeon HD 2900 series include dedicated ATI's Unified Video Decoder (UVD) for hardware decoding of MPEG4, VC-1, and H.264 video streams, this capability being the major part of AVIVO HD technology. In terms of functionality, NVIDIA's Purevideo 2 offers similar hardware video acceleration, with UVD including greater VC-1 offloading.

HDTV encoding support is implemented via the integrated AMD Xilleon encoder; the companion Rage Theater chip used on the Radeon X1000 series was replaced with the digital Theater 200 chip, providing VIVO capabilities.

For display outputs, all variants include two dual-link TMDS transmitters, except for HD 2400 and HD 3400, which include one single and one dual-link TMDS transmitters. Each DVI output includes dual-link HDCP encoder with on-chip decipher key. HDMI was introduced, supporting display resolutions up to 1,920×1,080, with integrated HD audio controller with 5.1-channel LPCM and AC3 encoding support. Audio is transmitted via DVI port, with specially designed DVI-to-HDMI dongle for HDMI output that carries both audio and video.[5]

All variants support CrossFireX technology. CrossFire efficiency was improved and shows performance approaching the theoretical maximum of twice the performance of a single card.[6][7]

While some of the architecture of Radeon HD 2000 family is similar to Xenos, Radeon HD 2000 family does not have embedded DRAM (eDRAM) frame buffer. Xenos' eDRAM is designed tightly around the limited resolutions at which the Xbox 360 operates. Personal computers operate at maximum efficiency at a much wider range of resolutions, which would require a significantly larger amount of eDRAM to be effective.

Desktop products[edit]

The R600 family is called the Radeon HD 2000 series, with the enthusiast segment being the Radeon HD 2900 series which originally comprised the Radeon HD 2900 XT with GDDR3 memory released on May 14, and the higher-clocked GDDR4 version in early July.

The mainstream and budget segment products were the Radeon HD 2600 and Radeon HD 2400 series respectively, both launched June 28, 2007.[8]

Previously there were no HD 2000 series products being offered in the performance segment while ATI used models from the previous generation to address that target market; the situation was not changed until the release of variants of the Radeon HD 2900 series, the Radeon HD 2900 Pro and GT, which filled the gap of the performance market for a short period of time.

Radeon HD 2400[edit]

ATI Radeon HD 2400 XT

The Radeon HD 2400 series was based on the codenamed RV610 GPU. It had 180 million transistors on a 65 nm fabrication process. The Radeon HD 2400 series used a 64-bit-wide memory bus.[9] The die size is 85 mm2.[10] The official PCB design implements only a passive-cooling heatsink instead of a fan, and official claims of power consumption are as little as 35 W.[citation needed] The core has 16 kiB unified vertex/texture cache away from dedicated vertex cache and L1/L2 texture cache used in higher end model.

Reports has that the first batch of the RV610 core (silicon revision A12), only being released to system builders, has a bug that hindered the UVD from working properly, but other parts of the die operated normally. Those products were officially supported with the release of Catalyst 7.10 driver, which the cards were named as Radeon HD 2350 series.[11]

Several reports from owners of HD 2400 Pro suggest the card do not fully support hardware decoding for all H.264/VC-1 videos. The device driver, even with the latest stable version, seem to only honor hardware decoding for formats specified in the Blu-ray and HD-DVD specification. As a result such restriction, the card is deemed as not very useful for hardware video decoding since the majority of the H.264/VC-1 videos on the web are not encoded in those formats (even though the hardware itself is fully capable of doing such decoding work). This device driver restriction has led to the development of a third party driver patch, "DeusEx ATI HD Registry Tweak", to unlock the potential of HD 2400 Pro for full support of H.264/VC-1 hardware video decoding.[12][13][14]

Radeon HD 2600[edit]

The Radeon HD 2600 series was based on the codenamed RV630 GPU and packed 390 million transistors on a 65 nm fabrication process. The Radeon HD 2600-series video cards included GDDR3 support, a 128-bit memory ring bus and 4-phase digital PWM,[9] spanning a die size of 153 mm2.[15] Neither of the GDDR3 reference PCI-E designs required additional power connectors whereas the HD 2600 Pro and XT AGP variants required additional power through either 4-pin or 6-pin power connectors,[16] Official claims state that the Radeon HD 2600 series consumes as little as 45 W of power.[citation needed]

Radeon HD 2600 X2[edit]

The Radeon HD 2600 X2 is a dual-GPU product which includes 2 RV630 cores onto a single PCB with a PCI-E bridge splitting the PCI-E ×16 bandwidth into two groups of PCI-E ×8 lanes (each 2.0 Gbit/s). The card provides 4 DVI outputs or HDMI outputs via dongle and supports CrossFire configurations. AMD calls this product the Radeon HD 2600 X2 as seen by some vendors and as observed inside the INF file of Catalyst 7.9 version 8.411. Sapphire and other vendors including PowerColor and GeCube have either announced or demonstrated their respective dual GPU (connected by crossfire) products.[17] Catalyst 7.9 added support for this hardware in September 2007. However, AMD did not provide much publicity to promote it. A vendor may offer cards containing 256 MiB, 512 MiB, or 1 GiB of video memory. Although the memory technology utilized is at a vendor's discretion, most vendors have opted for GDDR3 and DDR2 due to lower manufacturing cost and positioning of this product for the mainstream rather than performance market segment.

Radeon HD 2900[edit]

The Radeon HD 2900 series was based on the codenamed R600 GPU, packed 700 million transistors on an 80 nm fabrication process and had a 420 mm2 die size.[18] The Radeon HD 2900 XT was the first graphics card product to implement digital PWM on board, specifically 7-phase PWM, and was the first graphics card from ATI to support DirectX 10. It was also the first product of the R600 architecture and was launched on May 14, 2007.

The Radeon HD 2900 Pro was clocked lower at 600 MHz core and 800 MHz memory (1,600 MHz effective), configured with 512 MiB or 1 GiB (GDDR3/GDDR4) of video memory and the same 512-bit memory controller as the Radeon HD 2900 XT instead of the previously rumored 256-bit memory controller.[19]

The Radeon HD 2900 GT was a 48-shader cluster variant clocked the same as the HD 2900 Pro with 256 MiB of video memory on a 256-bit interface.

Mobile products[edit]

All Mobility Radeon HD 2000 series share the same feature set support as their desktop counterparts, as well as the addition of the battery-conserving PowerPlay 7.0 features, which are augmented from the previous generation's PowerPlay 6.0.

The Mobility Radeon HD 2300 is a budget product which includes UVD in silica but lacks unified shader architecture and DirectX 10.0/SM 4.0 support, limiting support to DirectX 9.0c/SM 3.0 using the more traditional architecture of the previous generation. A high-end variant, the Mobility Radeon HD 2700, with higher core and memory frequencies than the Mobility Radeon HD 2600, was released in mid-December 2007.

The Mobility Radeon HD 2400 is offered in two model variants; the standard HD 2400 and the HD 2400 XT.[20]

The Mobility Radeon HD 2600 is also available in the same two flavors; the plain HD 2600 and, at the top of the mobility lineup, the HD 2600 XT.[21]

The half-generation update treatment had also applied to mobile products. Announced prior to CES 2008 was the Mobility Radeon HD 3000 series. Released in the first quarter of 2008, the Mobility Radeon HD 3000 series consisted of two families, the Mobility Radeon HD 3400 series and the Mobility Radeon HD 3600 series. The Mobility Radeon HD 3600 series also featured the industry's first implementation of on-board 128-bit GDDR4 memory.

About the time of late March to early April, 2008, AMD renewed the device ID list on its website [22] with the inclusion of Mobility Radeon HD 3850 X2 and Mobility Radeon HD 3870 X2 and their respective device IDs. Later in Spring IDF 2008 held in Shanghai, a development board of the Mobility Radeon HD 3870 X2 was demonstrated alongside a Centrino 2 platform demonstration system.[23] The Mobility Radeon HD 3870 X2 was based on two M88 GPUs with the addition of a PCI Express switch chip on a single PCB. The demonstrated development board is on PCI Express 2.0 ×16 bus, while the final product is expected to be on AXIOM/MXM modules.

Driver support[edit]

Main article: AMD Catalyst

Windows[edit]

The Purple Pill tool issue, which could allow unsigned drivers to be loaded into Windows Vista and tamper with the operating system kernel,[24] was resolved in the Catalyst 7.8 release (version 8.401).[25] The AVIVO video converter for Windows Vista, and color temperature control in Catalyst Control Center was added with the release of Catalyst 7.9, package version 8.411. Software CrossFire was enabled for HD 2600 and HD 2400 series video cards with the release of Catalyst 7.10 (package version 8.421)

The Catalyst 8.1, package version 8.451, supports for MultiView technology for accelerated OpenGL rendering on multiple video card setup (CrossFire). The driver also allows CrossFire configurations for Radeon HD 3850 and HD 3870 video cards.[26][27]

The Catalyst 8.3 is described by AMD as a milestone release,[28] supporting DirectX 10.1, ATI CrossFire X technology and allowing the mixing of different Radeon HD 3800 series video cards to form a CrossFire X setup with 2 to 4 GPUs. Catalyst 8.3 introduced to new video controls to further enhance the video playback quality, these controls includes edge enhancement and noise reduction settings. There is also the support for extended desktop in CrossFire X mode. The anti-aliasing support for Unreal Engine 3.0 in DirectX 9.0 games, support for CFAA filters (wide tent and box tent) to be enabled when Super AA is enabled, and other features as developer support for hardware surface tessellation, hardware accelerated wide aspect ratio LCD scaling, HydraVision support for Windows Vista allowing to add maximum 9 virtual desktops and new Folding@home client are also officially supported in this release.

The Catalyst 8.5, package version 8.493[29] brought new features include component video with 480i and 480p resolutions, SECAM TV output support, 1080p HDTV custom mode via HDMI, 1080p24 (1080p resolution at 24 Hz) support, HDMI Audio for non-standard TV modes (CEA 861b), support for adaptive anti-aliasing (and later, in Catalyst 8.6, also support for custom filters [30]) under OpenGL, Windows XP SP3 support and un-install utility enhancements. The driver also includes performance improvements and fixes some instability issues and rendering issues on some games.

Current Catalyst drivers do not support the AGP versions of Radeon HD 2000/3000 series cards with RIALTO bridge. Installing Catalyst drivers on those cards will yield the following error message: "setup did not find a driver compatible with your current hardware or operating system." or simply fail outright. The AGP cards in question are supported unofficially by ATI/AMD with a hot-fixed Catalyst driver-set each month since May 2008 with the Catalyst 8.5 hotfix.[31] Their PCI vendor IDs are listed below:[32]

GPU core Product PCI device ID
RV610 Radeon HD 2400 Pro 94C4
RV630 Radeon HD 2600 Pro 9587
RV630 Radeon HD 2600 XT 9586

Linux[edit]

The official proprietary ATI Linux driver was named fglrx, then renamed as Catalyst for Linux. In the past there was no support for the AGP versions of the HD 2400 and HD 2600, but support was added in version 8.5 of fglrx.[33]

Another Linux driver is the Radeon driver, an open-source AMD display driver, it is developed in part by specifications that AMD has openly published. To date, AMD has released register specifications for M56, M76, RV630 and RS690 GPUs and 3D programming guide for the R500 family of GPUs.[34] AMD has committed to releasing their R500 and R600 GPU documentation along with publishing their specifications for past generations of GPUs.[35]

Documentation release[edit]

AMD committed to releasing register documentations for each generations of GPU to support the open source community and an open source driver – Radeon for Linux(xf86-video-ati). Initial register documentation and parser code to execute the AtomBIOS ROM routines were released in September 2007. The R600 family Instruction Set Architecture guide was released on June 11, 2008.[36] Sample code and register headers for the R600 and R700 3D engines were released in December 2008. AMD released the specifications for both the r6xx and r7xx families on January 26, 2009.[37]

Chipset table[edit]

See also[edit]

References[edit]

  1. ^ EliteBastards' HD2000 preview, retrieved July 23, 2007.
  2. ^ TechReport UVD article
  3. ^ AMD press release, the third paragraph.

    AMD also wishes to clarify any confusion that may exist regarding the presence of the Unified Video Decoder (UVD) in its ATI Radeon HD 2000 series graphics processors. UVD is present in the ATI Mobility Radeon HD 2300, the ATI Radeon HD 2400, and the ATI Radeon HD 2600 series products, but is not present in the ATI Radeon HD 2900 series products as it is not needed due to the usage model of this high end product.

    —AMD Press release
  4. ^ Huynh, Anh T. & Kubicki, Kristopher. Whoops, ATI Radeon HD 2900 XT Lacks UVD, DailyTech, May 25, 2007.
  5. ^ DailyTech report, retrieved December 7, 2007
  6. ^ Wasson, Scott. AMD Radeon HD 2900 XT graphics processor: R600 revealed, Tech Report, May 14, 2007
  7. ^ Wilson, Derek. ATI Radeon HD 2900 XT: Calling a Spade a Spade: Multi-GPU Performance - Prey, AnandTech, May 14, 2007.
  8. ^ HD2400 & HD2600 Press release
  9. ^ a b AMD official press release
  10. ^ Beyond3D RV610 chip reference, retrieved September 25, 2007
  11. ^ Fudzilla report, retrieved October 31, 2007 Archived November 12, 2007 at the Wayback Machine
  12. ^ Official Page for DeusEx ATI HD Registry Tweak
  13. ^ AVSForum.com: Details on the registry settings for DeusEx ATI HD Registry Tweak
  14. ^ AVSForum.com: Details on the effects of each setting for DeusEx ATI HD Registry Tweak
  15. ^ Beyond3D RV630 chip reference, retrieved September 25, 2007
  16. ^ Sapphire HD2K Product Matrix
  17. ^ Beyond3D report, retrieved September 13, 2007
  18. ^ Beyond3D R600 review, retrieved September 25, 2007
  19. ^ Kowaliski, Cyril (2007-09-25). "AMD launches the $249 Radeon HD 2900 Pro". The Tech Report. Retrieved 2007-09-26. 
  20. ^ Mobility Radeon HD 2400 specifications and Mobility Radeon HD 2400 XT specifications
  21. ^ HD 2600 specifications and HD 2600 XT specifications
  22. ^ ATI Vendor ID page
  23. ^ Hexus.net report: Welcome to the world's fastest laptop, brought to you by Intel and ATI, retrieved April 8, 2008
  24. ^ DailyTech report
  25. ^ The Inquirer report
  26. ^ Fudzilla review, retrieved February 15, 2008 Archived February 12, 2008 at the Wayback Machine
  27. ^ Legit Reviews review, retrieved February 15, 2008
  28. ^ Catalyst 8.3 release notes, retrieved March 5, 2008
  29. ^ Catalyst 8.4 release notes, retrieved April 17, 2008
  30. ^ "Advanced Micro Devices, Inc. - Unauthorized Download". A248.e.akamai.net. 2011-09-10. Retrieved 2011-09-19. 
  31. ^ AGP issue on AMD support page
  32. ^ guru3D discussion thread
  33. ^ Linux Catalyst 8.5 release notes
  34. ^ AMD Developer Central - Developer Guides and Manuals, retrieved September 30, 2008
  35. ^ Phoronix report
  36. ^ Advanced Micro Devices, Inc. R600-Family Instruction Set Architecture, X.org website, June 11, 2008.
  37. ^ Advanced Micro Devices, Inc. Radeon R6xx/R7xx 3D Register Reference Guide, X.org website, January 26, 2009.

External links[edit]