Jump to content

Taurus Void

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by SpaceImplorerExplorerImplorer (talk | contribs) at 13:33, 26 November 2022 (Location). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Observation Data
(Epoch J2000[1])
Right Ascension3h30min[1]
Declination+20°[1]
Galactic Longitude167°[2]
Galactic Latitude-29°[2]
Apparent Radial Velocity4,000 km/s (2,500 mi/s)[2]
Radius~2,000 km/s (1,200 mi/s)[2]

The Taurus Void is a vast, near-empty region of space situated between the Perseus–Pisces Supercluster and the Virgo Supercluster. The Taurus void is unique because of its relatively close proximity to Earth, and because it helps to define the edge of latter's home supercluster, the Virgo Supercluster. Despite its close proximity to Earth, the Taurus Void is not well-studied because it is partially obscured by the Milky Way when viewed from Earth. In contrast to its ambiguous boundary in the section of sky obscured by the Milky Way, the Taurus Void has a very well-defined boundary with the Perseus-Pisces supercluster.[3]

Location

In Earth's sky, the Taurus Void appears from ~2h40min to at least 4h ra, at which point it is obscured by the Milky Way, and from 5° to 40° dec.[4] Opposite its border with the Milky Way, the Taurus Void forms a distinct border with the Perseus-Pisces supercluster. Specifically, the void is bordered by the galaxy clusters A400, A426, and A374 within the supercluster.[5]

In 3D space, the Taurus Void resides between the Perseus-Pisces Supercluster and our own Virgo Supercluster. By situating itself between these two superclusters, the Taurus Void, along with the Local Void, define the boundary between these two superclusters (and to some extent the Laniakea Supercluster, because the Virgo Supercluster is technically a part of the much larger Laniakea Supercluster).[6]

Zone of Avoidance

Despite its close proximity to Earth, the Taurus Void is a difficult void to study because it lies behind the Zone of Avoidance (ZOA) – the area of sky obscured by the Milky Way. The Taurus Void lies behind an area of high extinction.[5]

Because much of the Taurus Void lies behind an area of high extinction, scientists face a challenge when trying to determine the density and dimensions of the Taurus Void. The main problem is that light from dimmer galaxies lying behind the Milky Way may be extinguished before it reaches Earth, preventing scientists from observing these galaxies. This would lead scientists to believe that the Taurus Void is emptier than it actually is, because they can not observe the galaxies that may be present.

This is not to say that the Taurus Void is not an actual void, however. The void has previously been observed in the infrared spectrum (where there is less foreground extinction from the Milky Way) to establish that the void is indeed a void.[7] Additionally, there have been other studies that have mapped the void[5][6][7][8] and others that have determined the rate of galaxy outflow from the void to other superclusters.[9] Together, these studies provide strong evidence that a void does exist, despite the difficulty of observing objects behind the ZOA.

Further efforts to see behind the Milky Way's ZOA such as the ALFAZOA[10] and ALFALFA[11] surveys may be able to perform more accurate measurements and place better constraints on the parameters of the void in the future. The surveys, conducted using the Arecibo radio telescope, will attempt to look for light from distant galaxies that has been redshifted to a wavelength that will stand out in comparison to the noise caused by the Milky Way's Zone of Avoidance. However, these surveys have limited range in the north-south (declination) direction, due to operation constraints of the Arecibo telescope.

See also

References

  1. ^ a b c Henning, P. A.; Springob, C. M.; Minchin, R. F.; et al. (June 2010). "The Arecibo L-band Feed Array Zone of Avoidance Survey. I. Precursor Observations Through the Inner and Outer Galaxy". The Astronomical Journal. 139 (6): 2130–47. arXiv:1002.2933. Bibcode:2010AJ....139.2130H. doi:10.1088/0004-6256/139/6/2130.
  2. ^ a b c d Donley, Jennifer L.; Staveley-Smith, L.; Kraan-Korteweg, R. C.; et al. (January 2005). "The H I Parkes Zone of Avoidance Survey: The Northern Extension". The Astronomical Journal. 129 (1): 220–38. arXiv:astro-ph/0409570. Bibcode:2005AJ....129..220D. doi:10.1086/426320. original data from Fairall, A. P. 1998, Large-Scale Structures in the Local Universe (Chichester: Wiley)
  3. ^ Powell, Richard. "The Perseus-Pisces Supercluster." Atlas of the Universe. Web. Retrieved 18 Oct. 2015.
  4. ^ Wegner, Gary; Haynes, Martha P.; Giovanelli, Riccardo (April 1993). "A Survey of the Pisces-Perseus. V. The Declination Strip +33.5 degrees to +39.5 degrees and the Main Supercluster Ridge". The Astronomical Journal. 105 (4): 1251–70. Bibcode:1993AJ....105.1251W. doi:10.1086/116507.
  5. ^ a b c Giovanelli, Riccardo; Haynes, Martha P.; Chincarini, Guido L. (January 1986). "Morphological Segregation in the Pisces-Perseus Supercluster". The Astrophysical Journal. 300: 77–92. Bibcode:1986ApJ...300...77G. doi:10.1086/163784.{{cite journal}}: CS1 maint: date and year (link)
  6. ^ a b Tully, R. Brent; Courtois, Hélène; Hoffman, Yehuda; Pomarède, Daniel (3 September 2014). "The Laniakea Supercluster of Galaxies". Nature. 513 (7516): 71–73. arXiv:1409.0880. Bibcode:2014Natur.513...71T. doi:10.1038/nature13674. PMID 25186900. S2CID 205240232.
  7. ^ a b Lu, Nanyao Y.; Freudling, Wolfram (1994). Balkowski, C.; Kraan-Korteweg, C. (eds.). "Large-Scale Structures in the Highly Obscured Orion-Taurus Region". Astronomical Society of the Pacific Conference Series. 67: 238–48. Bibcode:1994ASPC...67..239L.
  8. ^ Marzke, Ronald O.; Huchra, John P.; Geller, Margaret J. (November 1996). "Large-Scale Structure at Low Galactic Latitude". The Astronomical Journal. 112 (5): 1803–11, 2356–7. Bibcode:1996AJ....112.1803M. doi:10.1086/118142.
  9. ^ Erdoǧdu, Pirin; Lahav, Ofer; Huchra, John P.; et al. (November 2006). "Reconstructed density and velocity fields from the 2MASS Redshift Survey" (PDF). Monthly Notices of the Royal Astronomical Society. 373 (1): 45–64. arXiv:astro-ph/0610005. Bibcode:2006MNRAS.373...45E. doi:10.1111/j.1365-2966.2006.11049.x. Archived (PDF) from the original on 26 July 2018.
  10. ^ ALFA ZOA Team. "The Arecibo Zone of Avoidance Survey (ALFAZOA)." Arecibo Observatory, 5 Oct. 2015. Web. Retrieved 18 Oct. 2015.
  11. ^ ALFA Team at Cornell. "The Arecibo Legacy Fast ALFA Survey." Arecibo Observatory, 1 Apr. 2013 Web. Retrieved 18 Oct. 2015.