Thue equation

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For other theorems named after Axel Thue, see Thue's theorem (disambiguation).

In mathematics, a Thue equation is a Diophantine equation of the form

ƒ(x,y) = r,

where ƒ is an irreducible bivariate form of degree at least 3 over the rational numbers, and r is a nonzero rational number. It is named after Axel Thue who in 1909 proved a theorem, now called Thue's theorem, that a Thue equation has finitely many solutions in integers x and y.[1]

The Thue equation is soluble effectively: there is an explicit bound on the solutions x, y of the form (C_1 r)^{C_2} where constants C1 and C2 depend only on the form ƒ. A stronger result holds, that if K is the field generated by the roots of ƒ then the equation has only finitely many solutions with x and y integers of K and again these may be effectively determined.[2]

Solving Thue equations[edit]

Solving a Thue equation can be described as an algorithm[3] ready for implementation in software. In particular, it is implemented in the following computer algebra systems:

References[edit]

  1. ^ A. Thue (1909). "Über Annäherungswerte algebraischer Zahlen". Journal für die reine und angewandte Mathematik 135: 284–305. doi:10.1515/crll.1909.135.284. 
  2. ^ Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 38. ISBN 0-521-20461-5. 
  3. ^ N. Tzanakis and B. M. M. de Weger (1989). "On the practical solution of the Thue equation". Journal of Number Theory 31 (2): 99–132. doi:10.1016/0022-314X(89)90014-0. 

Further reading[edit]