Jump to content

Pell's equation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Undid revision 1059924186 by 威士忌迴旋曲 (talk)
Tags: Undo Reverted
No edit summary
Tags: Manual revert Reverted references removed
Line 7: Line 7:
This equation was first studied extensively [[Indian mathematics|in India]] starting with [[Brahmagupta]],<ref>{{Cite web|last1=O'Connor|first1=J. J.|last2=Robertson|first2=E. F.|date=February 2002|title=Pell's Equation|url=https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/#:~:text=where%20n%20is%20a%20given,related%20to%20Pell's%20equation.|access-date=13 July 2020|website=School of Mathematics and Statistics, University of St Andrews, Scotland}}</ref> who found an integer solution to <math>92x^2 + 1 = y^2</math> in his ''[[Brāhmasphuṭasiddhānta]]'' circa 628.<ref>{{Cite web|url=https://www.britannica.com/science/number-theory|title=Number theory – Number theory in the East|last=Dunham|first=William|website=Encyclopedia Britannica|language=en|access-date=2020-01-04}}</ref> [[Bhāskara II|Bhaskara II]] in the twelfth century and [[Narayana Pandit]] in the fourteenth century both found general solutions to Pell's equation and other quadratic indeterminate equations. Bhaskara II is generally credited with developing the [[chakravala method|''chakravala'' method]], building on the work of [[Jayadeva]] and Brahmagupta. Solutions to specific examples of Pell's equation, such as the [[Pell number]]s arising from the equation with ''n'' = 2, had been known for much longer, since the time of [[Pythagoras]] in [[Greek mathematics|Greece]] and a similar date in India. [[William Brouncker, 2nd Viscount Brouncker|William Brouncker]] was the first European to solve Pell's equation. The name of Pell's equation arose from [[Leonhard Euler]] mistakenly attributing Brouncker's solution of the equation to [[John Pell]].<ref>As early as 1732–1733 Euler believed that John Pell had developed a method to solve Pell's equation, even though Euler knew that Wallis had developed a method to solve it (although William Brouncker had actually done most of the work):
This equation was first studied extensively [[Indian mathematics|in India]] starting with [[Brahmagupta]],<ref>{{Cite web|last1=O'Connor|first1=J. J.|last2=Robertson|first2=E. F.|date=February 2002|title=Pell's Equation|url=https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/#:~:text=where%20n%20is%20a%20given,related%20to%20Pell's%20equation.|access-date=13 July 2020|website=School of Mathematics and Statistics, University of St Andrews, Scotland}}</ref> who found an integer solution to <math>92x^2 + 1 = y^2</math> in his ''[[Brāhmasphuṭasiddhānta]]'' circa 628.<ref>{{Cite web|url=https://www.britannica.com/science/number-theory|title=Number theory – Number theory in the East|last=Dunham|first=William|website=Encyclopedia Britannica|language=en|access-date=2020-01-04}}</ref> [[Bhāskara II|Bhaskara II]] in the twelfth century and [[Narayana Pandit]] in the fourteenth century both found general solutions to Pell's equation and other quadratic indeterminate equations. Bhaskara II is generally credited with developing the [[chakravala method|''chakravala'' method]], building on the work of [[Jayadeva]] and Brahmagupta. Solutions to specific examples of Pell's equation, such as the [[Pell number]]s arising from the equation with ''n'' = 2, had been known for much longer, since the time of [[Pythagoras]] in [[Greek mathematics|Greece]] and a similar date in India. [[William Brouncker, 2nd Viscount Brouncker|William Brouncker]] was the first European to solve Pell's equation. The name of Pell's equation arose from [[Leonhard Euler]] mistakenly attributing Brouncker's solution of the equation to [[John Pell]].<ref>As early as 1732–1733 Euler believed that John Pell had developed a method to solve Pell's equation, even though Euler knew that Wallis had developed a method to solve it (although William Brouncker had actually done most of the work):
* {{cite journal |last1=Euler |first1=Leonhard |author-link=Leonhard Euler |title=De solutione problematum Diophantaeorum per numeros integros |journal=Commentarii Academiae Scientiarum Imperialis Petropolitanae (Memoirs of the Imperial Academy of Sciences at St. Petersburg) |date=1732–1733 |volume=6 |pages=175–188 |url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015065400890;view=1up;seq=185 |trans-title=On the solution of Diophantine problems by integers}} From p. 182: ''"At si ''a'' huiusmodi fuerit numerus, qui nullo modo ad illas formulas potest reduci, peculiaris ad invenienda ''p'' et ''q'' adhibenda est methodus, qua olim iam usi sunt ''Pellius'' et ''Fermatius''."'' (But if such an ''a'' be a number that can be reduced in no way to these formulas, the specific method for finding ''p'' and ''q'' is applied which ''Pell'' and ''Fermat'' have used for some time now.) From p. 183: ''"§. 19. Methodus haec extat descripta in operibus ''Wallisii'', et hanc ob rem eam hic fusius non-expono."'' (§. 19. This method exists described in the works of Wallis, and for this reason I do not present it here in more detail.)
* {{cite journal |last1=Euler |first1=Leonhard |author-link=Leonhard Euler |title=De solutione problematum Diophantaeorum per numeros integros |journal=Commentarii Academiae Scientiarum Imperialis Petropolitanae (Memoirs of the Imperial Academy of Sciences at St. Petersburg) |date=1732–1733 |volume=6 |pages=175–188 |url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015065400890;view=1up;seq=185 |trans-title=On the solution of Diophantine problems by integers}} From p. 182: ''"At si ''a'' huiusmodi fuerit numerus, qui nullo modo ad illas formulas potest reduci, peculiaris ad invenienda ''p'' et ''q'' adhibenda est methodus, qua olim iam usi sunt ''Pellius'' et ''Fermatius''."'' (But if such an ''a'' be a number that can be reduced in no way to these formulas, the specific method for finding ''p'' and ''q'' is applied which ''Pell'' and ''Fermat'' have used for some time now.) From p. 183: ''"§. 19. Methodus haec extat descripta in operibus ''Wallisii'', et hanc ob rem eam hic fusius non-expono."'' (§. 19. This method exists described in the works of Wallis, and for this reason I do not present it here in more detail.)
* Lettre IX. Euler à Goldbach, dated 10 August 1750 in: {{cite book |editor1-last=Fuss |editor1-first=P.H. |title=Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle ... |trans-title=Mathematical and physical correspondence of some famous geometers of the 18th century ... |date=1843 |location=St. Petersburg, Russia |page=37 |url=https://books.google.com/books?id=gf1OEXIQQgsC&pg=PA37 |language=fr, la, de}} From page 37: ''"Pro hujusmodi quaestionibus solvendis excogitavit D. Pell Anglus peculiarem methodum in Wallisii operibus expositam."'' (For solving such questions, the Englishman Dr. Pell devised a singular method [which is] shown in Wallis' works.)
* Lettre IX. Euler à Goldbach, dated 10 August 1750 in: {{cite book |editor1-last=Fuss |editor1-first=P.H. |title=Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle |trans-title=Mathematical and physical correspondence of some famous geometers of the 18th century |date=1843 |location=St. Petersburg, Russia |page=37 |url=https://books.google.com/books?id=gf1OEXIQQgsC&pg=PA37 |language=fr, la, de}} From page 37: ''"Pro hujusmodi quaestionibus solvendis excogitavit D. Pell Anglus peculiarem methodum in Wallisii operibus expositam."'' (For solving such questions, the Englishman Dr. Pell devised a singular method [which is] shown in Wallis' works.)
* {{cite book |last1=Euler |first1=Leonhard |title=Vollständige Anleitung zur Algebra, II. Theil |trans-title=Complete Introduction to Algebra, Part 2 |date=1771 |publisher=St. Petersburg, Russia |location=Kayserlichen Akademie der Wissenschaften (Imperial Academy of Sciences) |page=227 |url=https://archive.org/stream/bub_gb_nfYGAAAAcAAJ#page/n503 |language=de}} From p. 227: ''"§98. Hierzu hat vormals ein gelehrter Engländer, Namens Pell, eine ganz sinnreiche Methode erfunden, welche wir hier erklären wollen."'' (§.98 Concerning this, a learned Englishman by the name of Pell has previously found a quite ingenious method, which we will explain here.)
* {{cite book |last1=Euler |first1=Leonhard |title=Vollständige Anleitung zur Algebra, II. Theil |trans-title=Complete Introduction to Algebra, Part 2 |date=1771 |publisher=St. Petersburg, Russia |location=Kayserlichen Akademie der Wissenschaften (Imperial Academy of Sciences) |page=227 |url=https://archive.org/stream/bub_gb_nfYGAAAAcAAJ#page/n503 |language=de}} From p. 227: ''"§98. Hierzu hat vormals ein gelehrter Engländer, Namens Pell, eine ganz sinnreiche Methode erfunden, welche wir hier erklären wollen."'' (§.98 Concerning this, a learned Englishman by the name of Pell has previously found a quite ingenious method, which we will explain here.)
* English translation: {{cite book |last1=Euler |first1=Leonhard |title=Elements of Algebra ... |date=1810 |publisher=J. Johnson |location=London, England |page=78 |edition=2nd |volume= 2nd vol. |url=https://books.google.com/books?id=mqI-AAAAYAAJ&pg=PA78}}
* English translation: {{cite book |last1=Euler |first1=Leonhard |title=Elements of Algebra |date=1810 |publisher=J. Johnson |location=London, England |page=78 |edition=2nd |volume= 2nd vol. |url=https://books.google.com/books?id=mqI-AAAAYAAJ&pg=PA78}}
* {{cite book |last1=Heath |first1=Thomas L. |title=Diophantus of Alexandria : A Study in the History of Greek Algebra |date=1910 |publisher=Cambridge University Press |location=Cambridge, England |page=286 |url=https://archive.org/stream/diophantusofalex00heatiala#page/286 }} See especially footnote 4.</ref><ref name=":1" /><ref group=note>In Euler's ''Vollständige Anleitung zur Algebra'' (pp. 227 ff), he presents a solution to Pell's equation which was taken from John Wallis' ''Commercium epistolicum'', specifically, Letter 17 (''Epistola XVII'') and Letter 19 (''Epistola XIX'') of:
* {{cite book |last1=Heath |first1=Thomas L. |title=Diophantus of Alexandria : A Study in the History of Greek Algebra |date=1910 |publisher=Cambridge University Press |location=Cambridge, England |page=286 |url=https://archive.org/stream/diophantusofalex00heatiala#page/286 }} See especially footnote 4.</ref><ref name=":1" /><ref group=note>In Euler's ''Vollständige Anleitung zur Algebra'' (pp. 227 ff), he presents a solution to Pell's equation which was taken from John Wallis' ''Commercium epistolicum'', specifically, Letter 17 (''Epistola XVII'') and Letter 19 (''Epistola XIX'') of:
* {{cite book |editor1-last=Wallis |editor1-first=John |title=Commercium epistolicum, de Quaestionibus quibusdam Mathematicis nuper habitum. |trans-title=Correspondence, about some mathematical inquiries recently undertaken |date=1658 |publisher=A. Lichfield |location=Oxford, England |url=https://books.google.com/books?id=RqFGAAAAcAAJ&pg=PA56 |language=en, la, fr}} The letters are in Latin. Letter 17 appears on pp. 56–72. Letter 19 appears on pp. 81–91.
* {{cite book |editor1-last=Wallis |editor1-first=John |title=Commercium epistolicum, de Quaestionibus quibusdam Mathematicis nuper habitum. |trans-title=Correspondence, about some mathematical inquiries recently undertaken |date=1658 |publisher=A. Lichfield |location=Oxford, England |url=https://books.google.com/books?id=RqFGAAAAcAAJ&pg=PA56 |language=en, la, fr}} The letters are in Latin. Letter 17 appears on pp. 56–72. Letter 19 appears on pp. 81–91.
Line 67: Line 67:
* {{cite book |last1=Fermat |first1=Pierre de |editor1-last=Tannery |editor1-first=Paul |editor2-last=Henry |editor2-first=Charles |title=Oeuvres de Fermat |date=1896 |publisher=Gauthier-Villars et fils |location=Paris, France |pages=312–313 |volume=3rd vol. |url=https://www.biodiversitylibrary.org/item/62740#page/334/mode/1up |language=fr, la}}
* {{cite book |last1=Fermat |first1=Pierre de |editor1-last=Tannery |editor1-first=Paul |editor2-last=Henry |editor2-first=Charles |title=Oeuvres de Fermat |date=1896 |publisher=Gauthier-Villars et fils |location=Paris, France |pages=312–313 |volume=3rd vol. |url=https://www.biodiversitylibrary.org/item/62740#page/334/mode/1up |language=fr, la}}
Both letters are translated (in part) into English in:
Both letters are translated (in part) into English in:
* {{cite book |editor1-last=Struik |editor1-first=Dirk Jan |title=A Source Book in Mathematics, 1200–1800 |date=1986 |publisher=Princeton University Press |location=Princeton, New Jersey, USA |pages=29–30 |isbn=9781400858002 |url=https://books.google.com/books?id=o-3_AwAAQBAJ&pg=PA29}}</ref> In a letter to [[Kenelm Digby]], [[Bernard Frénicle de Bessy]] said that Fermat found the smallest solution for ''N'' up to 150, and challenged [[John Wallis]] to solve the cases ''N'' = 151 or 313. Both Wallis and [[William Brouncker, 2nd Viscount Brouncker|William Brouncker]] gave solutions to these problems, though Wallis suggests in a letter that the solution was due to Brouncker.<ref>In January 1658, at the end of ''Epistola XIX'' (letter 19), Wallis effusively congratulated Brouncker for his victory in a battle of wits against Fermat regarding the solution of Pell's equation. [https://books.google.com/books?id=_6nstlHZzaEC&pg=PA807#v=onepage&q&f=false From p. 807 of (Wallis, 1693):] ''"Et quidem cum Vir Nobilissimus, utut hac sibi suisque tam peculiaria putaverit, & altis impervia, (''quippe non omnis fert omnia tellus'') ut ab Anglis haud speraverit solutionem; profiteatur tamen ''qu'il sera pourtant ravi d'estre destrompé par cet ingenieux & scavant Signieur''; erit cur & ipse tibi gratuletur. Me quod attinet, humillimas est quod rependam gratias, quod in Victoriae tuae partem advocare dignatus es, ... "'' (And indeed, Most Noble Sir [i.e., Viscount Brouncker], he [i.e., Fermat] might have thought [to have] all to himself such an esoteric [subject, i.e., Pell's equation] with its impenetrable profundities (''for all land does not bear all things'' [i.e., not every nation can excel in everything]), so that he might hardly have expected a solution from the English; nevertheless, he avows ''that he will, however, be thrilled to be disabused by this ingenious and learned Lord'' [i.e., Brouncker]; it will be for that reason that he [i.e., Fermat] himself would congratulate you. Regarding myself, I requite with humble thanks your having deigned to call upon me to take part in your Victory, ... ) [Note: The date at the end of Wallis' letter is "Jan. 20. 1657"; however, that date was according to the old Julian calendar that Britain finally [[Calendar (New Style) Act 1750|discarded in 1752]]: most of the rest of Europe would have regarded that date as January 31, 1658. See [[Old Style and New Style dates#Transposition of historical event dates and possible date conflicts]])</ref>
* {{cite book |editor1-last=Struik |editor1-first=Dirk Jan |title=A Source Book in Mathematics, 1200–1800 |date=1986 |publisher=Princeton University Press |location=Princeton, New Jersey, USA |pages=29–30 |isbn=9781400858002 |url=https://books.google.com/books?id=o-3_AwAAQBAJ&pg=PA29}}</ref> In a letter to [[Kenelm Digby]], [[Bernard Frénicle de Bessy]] said that Fermat found the smallest solution for ''N'' up to 150, and challenged [[John Wallis]] to solve the cases ''N'' = 151 or 313. Both Wallis and [[William Brouncker, 2nd Viscount Brouncker|William Brouncker]] gave solutions to these problems, though Wallis suggests in a letter that the solution was due to Brouncker.<ref>In January 1658, at the end of ''Epistola XIX'' (letter 19), Wallis effusively congratulated Brouncker for his victory in a battle of wits against Fermat regarding the solution of Pell's equation. [https://books.google.com/books?id=_6nstlHZzaEC&pg=PA807#v=onepage&q&f=false From p. 807 of (Wallis, 1693):] ''"Et quidem cum Vir Nobilissimus, utut hac sibi suisque tam peculiaria putaverit, & altis impervia, (''quippe non omnis fert omnia tellus'') ut ab Anglis haud speraverit solutionem; profiteatur tamen ''qu'il sera pourtant ravi d'estre destrompé par cet ingenieux & scavant Signieur''; erit cur & ipse tibi gratuletur. Me quod attinet, humillimas est quod rependam gratias, quod in Victoriae tuae partem advocare dignatus es, "'' (And indeed, Most Noble Sir [i.e., Viscount Brouncker], he [i.e., Fermat] might have thought [to have] all to himself such an esoteric [subject, i.e., Pell's equation] with its impenetrable profundities (''for all land does not bear all things'' [i.e., not every nation can excel in everything]), so that he might hardly have expected a solution from the English; nevertheless, he avows ''that he will, however, be thrilled to be disabused by this ingenious and learned Lord'' [i.e., Brouncker]; it will be for that reason that he [i.e., Fermat] himself would congratulate you. Regarding myself, I requite with humble thanks your having deigned to call upon me to take part in your Victory, ) [Note: The date at the end of Wallis' letter is "Jan. 20. 1657"; however, that date was according to the old Julian calendar that Britain finally [[Calendar (New Style) Act 1750|discarded in 1752]]: most of the rest of Europe would have regarded that date as January 31, 1658. See [[Old Style and New Style dates#Transposition of historical event dates and possible date conflicts]])</ref>


[[John Pell]]'s connection with the equation is that he revised [[Thomas Branker]]'s translation<ref>{{citation|last=Rahn|first=Johann Heinrich|title=An introduction to algebra|url=http://eebo.chadwyck.com/search/full_rec?SOURCE=pgimages.cfg&ACTION=ByID&ID=V57365|year=1668|editor-last=Brancker|editor-first=Thomas|orig-year=1659|editor2-last=Pell}}</ref> of [[Johann Rahn]]'s 1659 book ''Teutsche Algebra''<ref group=note>''[[wikt:Special:Search/Teutsch|Teutsch]]'' is an obsolete form of ''Deutsch,'' meaning "German". Free E-book: [https://books.google.com/books?id=ZJg_AAAAcAAJ ''Teutsche Algebra'' (Google Books)]</ref> into English, with a discussion of Brouncker's solution of the equation. [[Leonhard Euler]] mistakenly thought that this solution was due to Pell, as a result of which he named the equation after Pell.<ref name=":1">{{Cite journal|last=Tattersall|first=James|url=https://pdfs.semanticscholar.org/6881/a5169f76c5b4de2b206346815313f343af52.pdf|archive-url=https://web.archive.org/web/20200215183051/https://pdfs.semanticscholar.org/6881/a5169f76c5b4de2b206346815313f343af52.pdf|url-status=dead|archive-date=2020-02-15|title=Elementary Number Theory in Nine Chapters|journal=Choice Reviews Online|publisher=Cambridge|year=2000|volume=37|issue=10|pages=274|doi=10.5860/choice.37-5721|s2cid=118948378}}</ref>
[[John Pell]]'s connection with the equation is that he revised [[Thomas Branker]]'s translation<ref>{{citation|last=Rahn|first=Johann Heinrich|title=An introduction to algebra|url=http://eebo.chadwyck.com/search/full_rec?SOURCE=pgimages.cfg&ACTION=ByID&ID=V57365|year=1668|editor-last=Brancker|editor-first=Thomas|orig-year=1659|editor2-last=Pell}}</ref> of [[Johann Rahn]]'s 1659 book ''Teutsche Algebra''<ref group=note>''[[wikt:Special:Search/Teutsch|Teutsch]]'' is an obsolete form of ''Deutsch,'' meaning "German". Free E-book: [https://books.google.com/books?id=ZJg_AAAAcAAJ ''Teutsche Algebra'' (Google Books)]</ref> into English, with a discussion of Brouncker's solution of the equation. [[Leonhard Euler]] mistakenly thought that this solution was due to Pell, as a result of which he named the equation after Pell.<ref name=":1">{{Cite journal|last=Tattersall|first=James|url=https://pdfs.semanticscholar.org/6881/a5169f76c5b4de2b206346815313f343af52.pdf|archive-url=https://web.archive.org/web/20200215183051/https://pdfs.semanticscholar.org/6881/a5169f76c5b4de2b206346815313f343af52.pdf|url-status=dead|archive-date=2020-02-15|title=Elementary Number Theory in Nine Chapters|journal=Choice Reviews Online|publisher=Cambridge|year=2000|volume=37|issue=10|pages=274|doi=10.5860/choice.37-5721|s2cid=118948378}}</ref>
Line 136: Line 136:


==List of fundamental solutions of Pell equations==
==List of fundamental solutions of Pell equations==
The following is a list of the fundamental solution to <math>x^2 - ny^2 = 1</math> with ''n'' ≤ 128. For square ''n'', there is no solution except (1, 0). The values of ''x'' are sequence {{OEIS link|id=A002350}} and those of ''y'' are sequence {{OEIS link|id=A002349}} in [[OEIS]].
The following is a list of the fundamental solution to <math>x^2 - ny^2 = 1</math> with ''n'' ≤ 128. For square ''n'', there is no solution except (1, 0). The values of ''x'' are sequence {{OEIS link|A002350}} and those of ''y'' are sequence {{OEIS link|A002349}} in [[OEIS]], or {{OEIS link|A033313}} and {{OEIS link|A033317}} in [[OEIS]] with square ''n'' skipped.


{| class="wikitable" style="text-align: center; display: inline-table;"
:{|class="wikitable"
!''n''
! ''n'' !!style="min-width:5em;" | ''x'' !!style="min-width:5em;" | ''y''
!''x''
!''y''
!''n''
!''x''
!''y''
!''n''
!''x''
!''y''
!''n''
!''x''
!''y''
|-
|-
! 1
|1
|&#045;
| – || –
|&#045;
|33
|23
|4
|65
|129
|16
|97
|62809633
|6377352
|-
|-
! 2
|2
| 3 || 2
|3
|2
|34
|35
|6
|66
|65
|8
|98
|99
|10
|-
|-
! 3
|3
| 2 || 1
|2
|1
|35
|6
|1
|67
|48842
|5967
|99
|10
|1
|-
|-
! 4
|4
|&#045;
| – || –
|&#045;
|36
|&#045;
|&#045;
|68
|33
|4
|100
|&#045;
|&#045;
|-
|-
! 5
|5
| 9 || 4
|9
|4
|37
|73
|12
|69
|7775
|936
|101
|201
|20
|-
|-
! 6
|6
| 5 || 2
|5
|2
|38
|37
|6
|70
|251
|30
|102
|101
|10
|-
|-
! 7
|7
| 8 || 3
|8
|3
|39
|25
|4
|71
|3480
|413
|103
|227528
|22419
|-
|-
! 8
|8
| 3 || 1
|3
|1
|40
|19
|3
|72
|17
|2
|104
|51
|5
|-
|-
! 9
|9
|&#045;
| – || –
|&#045;
|41
|2049
|320
|73
|2281249
|267000
|105
|41
|4
|-
|-
! 10
|10
| 19 || 6
|19
|6
|42
|13
|2
|74
|3699
|430
|106
|32080051
|3115890
|-
|-
! 11
|11
| 10 || 3
|10
|3
|43
|3482
|531
|75
|26
|3
|107
|962
|93
|-
|-
! 12
|12
| 7 || 2
|7
|2
|44
|199
|30
|76
|57799
|6630
|108
|1351
|130
|-
|-
! 13
|13
| 649 || 180
|649
|180
|45
|161
|24
|77
|351
|40
|109
|158070671986249
|15140424455100
|-
|-
! 14
|14
| 15 || 4
|15
|4
|46
|24335
|3588
|78
|53
|6
|110
|21
|2
|-
|-
! 15
|15
| 4 || 1
|4
|1
|47
|48
|7
|79
|80
|9
|111
|295
|28
|-
|-
! 16
|16
|&#045;
| – || –
|&#045;
|48
|7
|1
|80
|9
|1
|112
|127
|12
|-
|-
! 17
|17
| 33 || 8
|33
|8
|49
|&#045;
|&#045;
|81
|&#045;
|&#045;
|113
|1204353
|113296
|-
|-
! 18
|18
| 17 || 4
|17
|4
|50
|99
|14
|82
|163
|18
|114
|1025
|96
|-
|-
! 19
|19
| 170 || 39
|170
|39
|51
|50
|7
|83
|82
|9
|115
|1126
|105
|-
|-
! 20
|20
| 9 || 2
|9
|2
|52
|649
|90
|84
|55
|6
|116
|9801
|910
|-
|-
! 21
|21
| 55 || 12
|55
|12
|53
|66249
|9100
|85
|285769
|30996
|117
|649
|60
|-
|-
! 22
|22
| 197 || 42
|197
|42
|54
|485
|66
|86
|10405
|1122
|118
|306917
|28254
|-
|-
! 23
|23
| 24 || 5
|24
|5
|55
|89
|12
|87
|28
|3
|119
|120
|11
|-
|-
! 24
|24
| 5 || 1
|5
|1
|56
|15
|2
|88
|197
|21
|120
|11
|1
|-
|-
! 25
|25
|&#045;
| – || –
|&#045;
|57
|151
|20
|89
|500001
|53000
|121
|&#045;
|&#045;
|-
|-
! 26
|26
| 51 || 10
|51
|10
|58
|19603
|2574
|90
|19
|2
|122
|243
|22
|-
|-
! 27
|27
| 26 || 5
|26
|5
|59
|530
|69
|91
|1574
|165
|123
|122
|11
|-
|-
! 28
|28
| 127 || 24
|127
|24
|60
|31
|4
|92
|1151
|120
|124
|4620799
|414960
|-
|-
! 29
|29
| 9801 || 1820
|9801
|1820
|61
|1766319049
|226153980
|93
|12151
|1260
|125
|930249
|83204
|-
|-
! 30
|30
| 11 || 2
|11
|2
|62
|63
|8
|94
|2143295
|221064
|126
|449
|40
|-
|-
! 31
|31
| 1520 || 273
|1520
|273
|63
|8
|1
|95
|39
|4
|127
|4730624
|419775
|-
|-
! 32
|32
| 17 || 3
|17
|}
|3
|64

|&#045;
{| class="wikitable" style="text-align: center; display: inline-table;"
|&#045;
! ''n'' !!style="min-width:5em;" | ''x'' !!style="min-width:5em;" | ''y''
|-
|96
|49
! 33
|5
| 23 || 4
|-
|128
|577
! 34
|51
| 35 || 6
|-
! 35
| 6 || 1
|-
! 36
| – || –
|-
! 37
| 73 || 12
|-
! 38
| 37 || 6
|-
! 39
| 25 || 4
|-
! 40
| 19 || 3
|-
! 41
| 2049 || 320
|-
! 42
| 13 || 2
|-
! 43
| 3482 || 531
|-
! 44
| 199 || 30
|-
! 45
| 161 || 24
|-
! 46
| 24335 || 3588
|-
! 47
| 48 || 7
|-
! 48
| 7 || 1
|-
! 49
| – || –
|-
! 50
| 99 || 14
|-
! 51
| 50 || 7
|-
! 52
| 649 || 90
|-
! 53
| 66249 || 9100
|-
! 54
| 485 || 66
|-
! 55
| 89 || 12
|-
! 56
| 15 || 2
|-
! 57
| 151 || 20
|-
! 58
| 19603 || 2574
|-
! 59
| 530 || 69
|-
! 60
| 31 || 4
|-
! 61
| 1766319049 || 226153980
|-
! 62
| 63 || 8
|-
! 63
| 8 || 1
|-
! 64
| – || –
|}

{| class="wikitable" style="text-align: center; display: inline-table;"
! ''n'' !!style="min-width:5em;" | ''x'' !!style="min-width:5em;" | ''y''
|-
! 65
| 129 || 16
|-
! 66
| 65 || 8
|-
! 67
| 48842 || 5967
|-
! 68
| 33 || 4
|-
! 69
| 7775 || 936
|-
! 70
| 251 || 30
|-
! 71
| 3480 || 413
|-
! 72
| 17 || 2
|-
! 73
| 2281249 || 267000
|-
! 74
| 3699 || 430
|-
! 75
| 26 || 3
|-
! 76
| 57799 || 6630
|-
! 77
| 351 || 40
|-
! 78
| 53 || 6
|-
! 79
| 80 || 9
|-
! 80
| 9 || 1
|-
! 81
| – || –
|-
! 82
| 163 || 18
|-
! 83
| 82 || 9
|-
! 84
| 55 || 6
|-
! 85
| 285769 || 30996
|-
! 86
| 10405 || 1122
|-
! 87
| 28 || 3
|-
! 88
| 197 || 21
|-
! 89
| 500001 || 53000
|-
! 90
| 19 || 2
|-
! 91
| 1574 || 165
|-
! 92
| 1151 || 120
|-
! 93
| 12151 || 1260
|-
! 94
| 2143295 || 221064
|-
! 95
| 39 || 4
|-
! 96
| 49 || 5
|}

{| class="wikitable" style="text-align: center; display: inline-table;"
! ''n'' !!style="min-width:5em;" | ''x'' !!style="min-width:5em;" | ''y''
|-
! 97
| 62809633 || 6377352
|-
! 98
| 99 || 10
|-
! 99
| 10 || 1
|-
! 100
| – || –
|-
! 101
| 201 || 20
|-
! 102
| 101 || 10
|-
! 103
| 227528 || 22419
|-
! 104
| 51 || 5
|-
! 105
| 41 || 4
|-
! 106
| 32080051 || 3115890
|-
! 107
| 962 || 93
|-
! 108
| 1351 || 130
|-
! 109
| 158070671986249 || 15140424455100
|-
! 110
| 21 || 2
|-
! 111
| 295 || 28
|-
! 112
| 127 || 12
|-
! 113
| 1204353 || 113296
|-
! 114
| 1025 || 96
|-
! 115
| 1126 || 105
|-
! 116
| 9801 || 910
|-
! 117
| 649 || 60
|-
! 118
| 306917 || 28254
|-
! 119
| 120 || 11
|-
! 120
| 11 || 1
|-
! 121
| – || –
|-
! 122
| 243 || 22
|-
! 123
| 122 || 11
|-
! 124
| 4620799 || 414960
|-
! 125
| 930249 || 83204
|-
! 126
| 449 || 40
|-
! 127
| 4730624 || 419775
|-
! 128
| 577 || 51
|}
|}


Line 579: Line 610:
:<math> x^2 - ny^2 = -1. </math>
:<math> x^2 - ny^2 = -1. </math>


It has also been extensively studied; it can be solved by the same method of continued fractions and will have solutions if and only if the period of the continued fraction has odd length. However it is not known which roots have odd period lengths and therefore not known when the negative Pell equation is solvable. A necessary (but not sufficient) condition for solvability is that ''n'' is not divisible by 4 or by a prime of form 4''k''&nbsp;+&nbsp;3.<ref group=note>This is because the Pell equation implies that −1 is a [[quadratic residue]] modulo ''n''.</ref> Thus, for example, ''x''<sup>2</sup>&nbsp;−&nbsp;3''ny''<sup>2</sup>&nbsp;=&nbsp;−1 is never solvable, but ''x''<sup>2</sup>&nbsp;−&nbsp;5''ny''<sup>2</sup>&nbsp;=&nbsp;−1 may be.<ref>{{Cite journal|last1=Wang|first1=Jiaqi|last2=Cai|first2=Lide|date=December 2013|title=The solvability of negative Pell equation|url=http://archive.ymsc.tsinghua.edu.cn/pacm_download/21/241-2013The_solvability_of_negative_Pell_equation.pdf|journal=Tsinghua College|pages=5–6}}</ref>
It has also been extensively studied; it can be solved by the same method of [[continued fractions]] and will have solutions if and only if the length of the period of the continued fraction of <math>\sqrt{n}</math> ({{OEIS2C|A003285}}) is odd. However it is not known which roots have odd period lengths and therefore not known when the negative Pell equation is solvable. A necessary (but not sufficient) condition for solvability is that ''n'' is not divisible by 4 or by a prime of form 4''k''&nbsp;+&nbsp;3.<ref group=note>This is because the Pell equation implies that −1 is a [[quadratic residue]] modulo ''n''.</ref> Thus, for example, ''x''<sup>2</sup>&nbsp;−&nbsp;3''ny''<sup>2</sup>&nbsp;=&nbsp;−1 and ''x''<sup>2</sup>&nbsp;−&nbsp;4''ny''<sup>2</sup>&nbsp;=&nbsp;−1 are never solvable, but ''x''<sup>2</sup>&nbsp;−&nbsp;5''ny''<sup>2</sup>&nbsp;=&nbsp;−1 may be,<ref>{{Cite journal|last1=Wang|first1=Jiaqi|last2=Cai|first2=Lide|date=December 2013|title=The solvability of negative Pell equation|url=http://archive.ymsc.tsinghua.edu.cn/pacm_download/21/241-2013The_solvability_of_negative_Pell_equation.pdf|journal=Tsinghua College|pages=5–6}}</ref> such as when ''n'' = 13 or 17, though not when ''n'' = 41 or 61.


The first few numbers ''n'' for which ''x''<sup>2</sup>&nbsp;−&nbsp;''ny''<sup>2</sup>&nbsp;=&nbsp;−1 is solvable are
The first few numbers ''n'' for which ''x''<sup>2</sup>&nbsp;−&nbsp;''ny''<sup>2</sup>&nbsp;=&nbsp;−1 is solvable are
:1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, ... {{OEIS|id=A031396}}.
:1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, ... {{OEIS|id=A031396}}.


The proportion of square-free ''n'' divisible by ''k'' primes of the form 4''m''&nbsp;+&nbsp;1 for which the negative Pell equation is solvable is at least 40%.<ref>{{Citation|last1=Cremona|first1=John E.|title=Some density results for negative Pell equations; an application of graph theory|journal=Journal of the London Mathematical Society|volume=39|issue=1|pages=16–28|year=1989|series=Second Series|doi=10.1112/jlms/s2-39.1.16|issn=0024-6107|last2=Odoni|first2=R. W. K.}}</ref> If the negative Pell equation does have a solution for a particular ''n'', its fundamental solution leads to the fundamental one for the positive case by squaring both sides of the defining equation:
The proportion of square-free ''n'' divisible by ''k'' primes of the form 4''m''&nbsp;+&nbsp;1 for which the negative Pell equation is solvable is at least 40%.<ref>{{Citation|last1=Cremona|first1=John E.|title=Some density results for negative Pell equations; an application of graph theory|journal=Journal of the London Mathematical Society|volume=39|issue=1|pages=16–28|year=1989|series=Second Series|doi=10.1112/jlms/s2-39.1.16|issn=0024-6107|last2=Odoni|first2=R. W. K.}}</ref> If the negative Pell equation does have a solution for a particular ''n'', its fundamental solution leads to the fundamental one for the positive case by squaring both sides of the defining equation:
Line 599: Line 630:
which gives an infinite tower of solutions to the negative Pell's equation.
which gives an infinite tower of solutions to the negative Pell's equation.


The following is a list of the smallest solution to <math>x^2 - ny^2 = -1</math> with ''n'' ≤ 512, if solvable. The values of ''x'' are sequence {{OEIS link|A130226}} and those of ''y'' are sequence {{OEIS link|A130227}} in [[OEIS]], these two OEIS sequence only list the ''n'' such that this equation is solvable.
== Generalized Pell's equation ==

The equation
:{|class="wikitable"
:<math> x^2 - dy^2 = N</math>
!''n''
is called the '''generalized'''{{citation needed|date=October 2020}} (or '''general'''<ref name="titu">{{Cite book|last1=Andreescu|first1=Titu|title=Quadratic Diophantine Equations|last2=Andrica|first2=Dorin|publisher=Springer|year=2015|isbn=978-0-387-35156-8|location=[[New York City|New York]]}}</ref>) '''Pell's equation'''. The equation <math>u^2-dv^2=1</math> is the corresponding '''Pell's resolvent'''.<ref name="titu"/> A recursive algorithm was given by Lagrange in 1768 for solving the equation, reducing the problem to the case <math>\left\vert N \right\vert<\sqrt{d}</math>.<ref>{{Cite book|last=Lagrange|first=Joseph-Louis (1736-1813) Auteur du texte|url=https://gallica.bnf.fr/ark:/12148/bpt6k215570z|title=Oeuvres de Lagrange. T. 2 / publiées par les soins de M. J.-A. Serret [et G. Darboux] ; [précédé d'une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre]|date=1867–1892|language=EN}}</ref><ref>{{Cite web|last=Matthews|first=Keith|title=The Diophantine Equation x2 − Dy2 = N, D > 0|url=http://www.numbertheory.org/pdfs/patz5.pdf|archive-url=https://web.archive.org/web/20150318090657/http://www.numbertheory.org/pdfs/patz5.pdf|archive-date=2015-03-18|url-status=live|access-date=20 July 2020}}</ref> Such solutions can be derived using the continued fractions method as outlined above.
!''x''
!''y''
!''n''
!''x''
!''y''
!''n''
!''x''
!''y''
!''n''
!''x''
!''y''
|-
|2
|1
|1
|106
|4005
|389
|241
|71011068
|4574225
|365
|3458
|181
|-
|5
|2
|1
|109
|8890182
|851525
|250
|4443
|281
|370
|327
|17
|-
|10
|3
|1
|113
|776
|73
|257
|16
|1
|373
|5118
|265
|-
|13
|18
|5
|122
|11
|1
|265
|6072
|373
|389
|1282
|65
|-
|17
|4
|1
|125
|682
|61
|269
|82
|5
|394
|395023035
|19900973
|-
|26
|5
|1
|130
|57
|5
|274
|1407
|85
|397
|20478302982
|1027776565
|-
|29
|70
|13
|137
|1744
|149
|277
|8920484118
|535979945
|401
|20
|1
|-
|37
|6
|1
|145
|12
|1
|281
|1063532
|63445
|409
|111921796968
|5534176685
|-
|41
|32
|5
|149
|113582
|9305
|290
|17
|1
|421
|44042445696821418
|2146497463530785
|-
|50
|7
|1
|157
|4832118
|385645
|293
|2482
|145
|425
|268
|13
|-
|53
|182
|25
|170
|13
|1
|298
|409557
|23725
|433
|7230660684
|347483377
|-
|58
|99
|13
|173
|1118
|85
|313
|126862368
|7170685
|442
|21
|1
|-
|61
|29718
|3805
|181
|1111225770
|82596761
|314
|443
|25
|445
|4662
|221
|-
|65
|8
|1
|185
|68
|5
|317
|352618
|19805
|449
|189471332
|8941705
|-
|73
|1068
|125
|193
|1764132
|126985
|325
|18
|1
|457
|59089951584
|2764111349
|-
|74
|43
|5
|197
|14
|1
|337
|1015827336
|55335641
|458
|107
|5
|-
|82
|9
|1
|202
|3141
|221
|338
|239
|13
|461
|24314110
|1132421
|-
|85
|378
|41
|218
|251
|17
|346
|93
|5
|481
|964140
|43961
|-
|89
|500
|53
|226
|15
|1
|349
|9210
|493
|485
|22
|1
|-
|97
|5604
|569
|229
|1710
|113
|353
|71264
|3793
|493
|683982
|30805
|-
|101
|10
|1
|233
|23156
|1517
|362
|19
|1
|509
|395727950
|17540333
|}


For the smallest solutions of ''x''<sup>2</sup>−''ny''<sup>2</sup> = ±1, the values of ''x'' are sequence {{OEIS link|A006702}} and those of ''y'' are sequence {{OEIS link|A006703}} in [[OEIS]], or {{OEIS link|A077232}} and {{OEIS link|A077233}} in [[OEIS]] with square ''n'' skipped.
If <math>(x_0,y_0)</math> is a solution to <math> x^2 - dy^2 = N</math> and <math>(u_n,v_n)</math> is a solution to <math> u^2 - dv^2 = 1</math> then <math>(x_n,y_n)</math> such that <math>x_n+y_n\sqrt{d}=(x_0+y_0\sqrt{d})(u_n+v_n\sqrt{d})</math> is a solution to <math>x^2 - dy^2 = N</math>, a principle named the ''multiplicative principle''.<ref name="titu"/> The solution <math>(x_n,y_n)</math> is called a ''Pell multiple'' of the solution <math>(x_0,y_0)</math>.


== Generalized Pell's equation ==
There exists a finite set of solutions to <math>x^2-dy^2=N</math> such that every solution is a Pell multiple of a solution from that set. In particular, if <math>(u,v)</math> is the fundamental solution to <math>u^2-dv^2=1</math>, then each solution to the equation is a Pell multiple of a solution <math>(x,y)</math> with <math>|x|\le\tfrac{\sqrt{|N|}(\sqrt{|U|}+1)}2</math> and <math>|y|\le\tfrac{\sqrt{|N|}(\sqrt{|U|}+1)}{2\sqrt d}</math>, where <math>U=u+v\sqrt d</math>.<ref name="kconrad">{{cite web |last1=Conrad |first1=Keith |title=PELL’S EQUATION, II |url=https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn2.pdf |access-date=14 October 2021}}</ref>
The equation
:<math>x^2 - dy^2 = N</math>
is called the '''generalized'''{{citation needed|date=October 2020}} (or '''general'''<ref name="titu">{{Cite book|last1=Andreescu|first1=Titu|title=Quadratic Diophantine Equations|last2=Andrica|first2=Dorin|publisher=Springer|year=2015|isbn=978-0-387-35156-8|location=[[New York City|New York]]}}</ref>) '''Pell's equation'''. Like <math>x^2 - dy^2 = -1</math>, cases such as <math>x^2 - dy^2 = 2</math> and <math>x^2 - dy^2 = -2</math> are not always solvable (see [[OEIS]] sequence {{OEIS link|A261246}} and [http://www.numbertheory.org/php/pell.html this generalized Pell equation solver]). The equation <math>u^2-dv^2=1</math> is the corresponding '''Pell's resolvent'''.<ref name="titu"/> A recursive algorithm was given by Lagrange in 1768 for solving the equation, reducing the problem to the case <math>\left\vert N \right\vert<\sqrt{d}</math>.<ref>{{Cite book|last=Lagrange|first=Joseph-Louis (1736-1813) Auteur du texte|url=https://gallica.bnf.fr/ark:/12148/bpt6k215570z|title=Oeuvres de Lagrange. T. 2 / publiées par les soins de M. J.-A. Serret [et G. Darboux] ; [précédé d'une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre]|date=1867–1892|language=EN}}</ref><ref>{{Cite web|last=Matthews|first=Keith|title=The Diophantine Equation x2 − Dy2 = N, D > 0|url=https://web.archive.org/web/20150318090657/http://www.numbertheory.org/pdfs/patz5.pdf|url-status=live|access-date=20 July 2020}}</ref> Such solutions can be derived using the continued fractions method as outlined above.


If ''x'' and ''y'' and positive integer solutions to the Pell equation with <math>|N|<\sqrt d</math>, then <math>\tfrac xy</math> is a convergent to the continued fraction of <math>\sqrt d</math>.<ref name="kconrad" />
If <math>(x_0,y_0)</math> is a solution to <math> x^2 - dy^2 = N</math> and <math>(u_n,v_n)</math> is a solution to <math> u^2 - dv^2 = 1</math> then <math>(x_n,y_n)</math> such that <math>x_n+y_n\sqrt{d}=(x_0+y_0\sqrt{d})(u_n+v_n\sqrt{d})</math> is a solution to <math>x^2 - dy^2 = N</math>, a principle named the ''multiplicative principle''.<ref name="titu"/>


Solutions to the generalized Pell's equation are used for solving certain [[Diophantine equation]]s and [[unit (ring theory)|unit]]s of certain [[ring (mathematics)|ring]]s,<ref>{{Cite journal|last=Bernstein|first=Leon|date=1975-10-01|title=Truncated units in infinitely many algebraic number fields of degreen ≧4|journal=Mathematische Annalen|language=en|volume=213|issue=3|pages=275–279|doi=10.1007/BF01350876|s2cid=121165073|issn=1432-1807}}</ref><ref>{{Cite journal|last=Bernstein|first=Leon|date=1 March 1974|title=On the Diophantine Equation x(x + d)(x + 2d) +y(y + d)(y + 2d) = z(z + d)(z + 2d)|url=https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/on-the-diophantine-equation-xx-dx-2d-yy-dy-2d-zz-dz-2d/A432B5D85EDD13DA39111E6279F1ABF7|journal=Canadian Mathematical Bulletin|language=en|volume=17|issue=1|pages=27–34|doi=10.4153/CMB-1974-005-5|issn=0008-4395}}</ref> and they arise in the study of [[SIC-POVM]]s in [[quantum information theory]].<ref>{{Cite journal|last1=Appleby|first1=Marcus|last2=Flammia|first2=Steven|last3=McConnell|first3=Gary|last4=Yard|first4=Jon|date=August 2017|title=SICs and Algebraic Number Theory|journal=[[Foundations of Physics]]|language=en|volume=47|issue=8|pages=1042–1059|arxiv=1701.05200|bibcode=2017FoPh...47.1042A|doi=10.1007/s10701-017-0090-7|s2cid=119334103|issn=0015-9018}}</ref>
Solutions to the generalized Pell's equation are used for solving certain [[Diophantine equation]]s and [[unit (ring theory)|unit]]s of certain [[ring (mathematics)|ring]]s,<ref>{{Cite journal|last=Bernstein|first=Leon|date=1975-10-01|title=Truncated units in infinitely many algebraic number fields of degreen ≧4|journal=Mathematische Annalen|language=en|volume=213|issue=3|pages=275–279|doi=10.1007/BF01350876|s2cid=121165073|issn=1432-1807}}</ref><ref>{{Cite journal|last=Bernstein|first=Leon|date=1 March 1974|title=On the Diophantine Equation x(x + d)(x + 2d) +y(y + d)(y + 2d) = z(z + d)(z + 2d)|url=https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/on-the-diophantine-equation-xx-dx-2d-yy-dy-2d-zz-dz-2d/A432B5D85EDD13DA39111E6279F1ABF7|journal=[[Canadian Mathematical Bulletin]]|language=en|volume=17|issue=1|pages=27–34|doi=10.4153/CMB-1974-005-5|doi-access=free|issn=0008-4395}}</ref> and they arise in the study of [[SIC-POVM]]s in [[quantum information theory]].<ref>{{Cite journal|last1=Appleby|first1=Marcus|last2=Flammia|first2=Steven|last3=McConnell|first3=Gary|last4=Yard|first4=Jon|date=August 2017|title=SICs and Algebraic Number Theory|journal=[[Foundations of Physics]]|language=en|volume=47|issue=8|pages=1042–1059|arxiv=1701.05200|bibcode=2017FoPh...47.1042A|doi=10.1007/s10701-017-0090-7|s2cid=119334103|issn=0015-9018}}</ref>


The equation
The equation
Line 633: Line 952:
* {{mathworld|urlname=PellEquation|title=Pell's equation|ref=none}}
* {{mathworld|urlname=PellEquation|title=Pell's equation|ref=none}}
* {{MacTutor|class=HistTopics|id=Pell|title=Pell's equation}}
* {{MacTutor|class=HistTopics|id=Pell|title=Pell's equation}}
*[http://www.jakebakermaths.org.uk/maths/jshtmlpellsolverbigintegerv10.html Pell equation solver (''n'' has no upper limit)]
* [http://www.kaynet.or.jp/~kay/misc/pell2.html Data of the smallest solutions to Pell equations for ''D''≤9999]
* [https://raw.githubusercontent.com/xayahrainie4793/text-file-stored/main/pell%20equation.txt Data of the smallest solutions to Pell equations for ''D''≤25000]
*[http://www.numbertheory.org/php/pell.html Pell equation solver (''n''<10^10, can also return the solution to x^2-ny^2 = +-1, +-2, +-3, and +-4)]
* [https://raw.githubusercontent.com/xayahrainie4793/text-file-stored/main/pell%20solutions%20for%20d%20le%2025000.txt Data of the smallest solutions to ''x''<sup>2</sup>−''Dy''<sup>2</sup> = ±1, ±2, ±3, and the smallest primitive solution to ''x''2−''ny''^2 = ±4 for ''D''≤25000]
* [https://raw.githubusercontent.com/xayahrainie4793/text-file-stored/main/pell%20to%2025000.txt Data of the smallest solutions to ''x''<sup>2</sup>−''Dy''<sup>2</sup> = ±1, ±2, ±3, ±4 for ''D''≤25000]
* [http://www.jakebakermaths.org.uk/maths/jshtmlpellsolverbigintegerv10.html Pell equation solver (''D'' has no upper limit)]
* [http://math.fau.edu/richman/pell-m.htm Pell equation solver (''D'' has no upper limit)]
* [http://www.numbertheory.org/php/pell.html Pell equation solver (''D''<10<sup>10</sup>, can also return the smallest solution to ''x''<sup>2</sup>−''Dy''<sup>2</sup> = ±1, ±2, ±3, and the smallest primitive solution to ''x''2−''Dy''^2 = ±4)]
* [https://rosettagit.org/drafts/pells-equation/ many computer programs for Pell equation]
* [http://www.kaynet.or.jp/~kay/misc/program/pell.gp PARI/GP program for Pell equation]
* [https://blog.goo.ne.jp/r-de-r/e/ef134fa356cfdc59c9a39b06871614bc GMP library program for Pell equation]


{{Authority control}}
{{Authority control}}

Revision as of 10:24, 29 December 2021

Pell's equation for n = 2 and six of its integer solutions

Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form where n is a given positive nonsquare integer and integer solutions are sought for x and y. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose x and y coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y.

This equation was first studied extensively in India starting with Brahmagupta,[1] who found an integer solution to in his Brāhmasphuṭasiddhānta circa 628.[2] Bhaskara II in the twelfth century and Narayana Pandit in the fourteenth century both found general solutions to Pell's equation and other quadratic indeterminate equations. Bhaskara II is generally credited with developing the chakravala method, building on the work of Jayadeva and Brahmagupta. Solutions to specific examples of Pell's equation, such as the Pell numbers arising from the equation with n = 2, had been known for much longer, since the time of Pythagoras in Greece and a similar date in India. William Brouncker was the first European to solve Pell's equation. The name of Pell's equation arose from Leonhard Euler mistakenly attributing Brouncker's solution of the equation to John Pell.[3][4][note 1]

History

As early as 400 BC in India and Greece, mathematicians studied the numbers arising from the n = 2 case of Pell's equation,

and from the closely related equation

because of the connection of these equations to the square root of 2.[5] Indeed, if x and y are positive integers satisfying this equation, then x/y is an approximation of 2. The numbers x and y appearing in these approximations, called side and diameter numbers, were known to the Pythagoreans, and Proclus observed that in the opposite direction these numbers obeyed one of these two equations.[5] Similarly, Baudhayana discovered that x = 17, y = 12 and x = 577, y = 408 are two solutions to the Pell equation, and that 17/12 and 577/408 are very close approximations to the square root of 2.[6]

Later, Archimedes approximated the square root of 3 by the rational number 1351/780. Although he did not explain his methods, this approximation may be obtained in the same way, as a solution to Pell's equation.[5] Likewise, Archimedes's cattle problem — an ancient word problem about finding the number of cattle belonging to the sun god Helios — can be solved by reformulating it as a Pell's equation. The manuscript containing the problem states that it was devised by Archimedes and recorded in a letter to Eratosthenes,[7] and the attribution to Archimedes is generally accepted today.[8][9]

Around AD 250, Diophantus considered the equation

where a and c are fixed numbers and x and y are the variables to be solved for. This equation is different in form from Pell's equation but equivalent to it. Diophantus solved the equation for (a, c) equal to (1, 1), (1, −1), (1, 12), and (3, 9). Al-Karaji, a 10th-century Persian mathematician, worked on similar problems to Diophantus.[10]

In Indian mathematics, Brahmagupta discovered that

a form of what is now known as Brahmagupta's identity. Using this, he was able to "compose" triples and that were solutions of , to generate the new triples

and

Not only did this give a way to generate infinitely many solutions to starting with one solution, but also, by dividing such a composition by , integer or "nearly integer" solutions could often be obtained. For instance, for , Brahmagupta composed the triple (10, 1, 8) (since ) with itself to get the new triple (192, 20, 64). Dividing throughout by 64 ('8' for and ) gave the triple (24, 5/2, 1), which when composed with itself gave the desired integer solution (1151, 120, 1). Brahmagupta solved many Pell equations with this method, proving that it gives solutions starting from an integer solution of for k = ±1, ±2, or ±4.[11]

The first general method for solving the Pell equation (for all N) was given by Bhāskara II in 1150, extending the methods of Brahmagupta. Called the chakravala (cyclic) method, it starts by choosing two relatively prime integers and , then composing the triple (that is, one which satisfies ) with the trivial triple to get the triple , which can be scaled down to

When is chosen so that is an integer, so are the other two numbers in the triple. Among such , the method chooses one that minimizes , and repeats the process. This method always terminates with a solution (proved by Joseph-Louis Lagrange in 1768). Bhaskara used it to give the solution x = 1766319049, y = 226153980 to the N = 61 case.[11]

Several European mathematicians rediscovered how to solve Pell's equation in the 17th century, apparently unaware that it had been solved almost five hundred years earlier in India. Pierre de Fermat found how to solve the equation and in a 1657 letter issued it as a challenge to English mathematicians.[12] In a letter to Kenelm Digby, Bernard Frénicle de Bessy said that Fermat found the smallest solution for N up to 150, and challenged John Wallis to solve the cases N = 151 or 313. Both Wallis and William Brouncker gave solutions to these problems, though Wallis suggests in a letter that the solution was due to Brouncker.[13]

John Pell's connection with the equation is that he revised Thomas Branker's translation[14] of Johann Rahn's 1659 book Teutsche Algebra[note 2] into English, with a discussion of Brouncker's solution of the equation. Leonhard Euler mistakenly thought that this solution was due to Pell, as a result of which he named the equation after Pell.[4]

The general theory of Pell's equation, based on continued fractions and algebraic manipulations with numbers of the form was developed by Lagrange in 1766–1769.[15]

Solutions

Fundamental solution via continued fractions

Let denote the sequence of convergents to the regular continued fraction for . This sequence is unique. Then the pair solving Pell's equation and minimizing x satisfies x1 = hi and y1 = ki for some i. This pair is called the fundamental solution. Thus, the fundamental solution may be found by performing the continued fraction expansion and testing each successive convergent until a solution to Pell's equation is found.[16]

The time for finding the fundamental solution using the continued fraction method, with the aid of the Schönhage–Strassen algorithm for fast integer multiplication, is within a logarithmic factor of the solution size, the number of digits in the pair . However, this is not a polynomial time algorithm because the number of digits in the solution may be as large as n, far larger than a polynomial in the number of digits in the input value n.[17]

Additional solutions from the fundamental solution

Once the fundamental solution is found, all remaining solutions may be calculated algebraically from

[17]

expanding the right side, equating coefficients of on both sides, and equating the other terms on both sides. This yields the recurrence relations

Concise representation and faster algorithms

Although writing out the fundamental solution (x1, y1) as a pair of binary numbers may require a large number of bits, it may in many cases be represented more compactly in the form

using much smaller integers ai, bi, and ci.

For instance, Archimedes' cattle problem is equivalent to the Pell equation , the fundamental solution of which has 206545 digits if written out explicitly. However, the solution is also equal to

where

and and only have 45 and 41 decimal digits, respectively.[17]

Methods related to the quadratic sieve approach for integer factorization may be used to collect relations between prime numbers in the number field generated by n, and to combine these relations to find a product representation of this type. The resulting algorithm for solving Pell's equation is more efficient than the continued fraction method, though it still takes more than polynomial time. Under the assumption of the generalized Riemann hypothesis, it can be shown to take time

where N = log n is the input size, similarly to the quadratic sieve.[17]

Quantum algorithms

Hallgren showed that a quantum computer can find a product representation, as described above, for the solution to Pell's equation in polynomial time.[18] Hallgren's algorithm, which can be interpreted as an algorithm for finding the group of units of a real quadratic number field, was extended to more general fields by Schmidt and Völlmer.[19]

Example

As an example, consider the instance of Pell's equation for n = 7; that is,

The sequence of convergents for the square root of seven are

h / k (Convergent) h2 − 7k2 (Pell-type approximation)
2 / 1 −3
3 / 1 +2
5 / 2 −3
8 / 3 +1

Therefore, the fundamental solution is formed by the pair (8, 3). Applying the recurrence formula to this solution generates the infinite sequence of solutions

(1, 0); (8, 3); (127, 48); (2024, 765); (32257, 12192); (514088, 194307); (8193151, 3096720); (130576328, 49353213); ... (sequence A001081 (x) and A001080 (y) in OEIS)

The smallest solution can be very large. For example, the smallest solution to is (32188120829134849, 1819380158564160), and this is the equation which Frenicle challenged Wallis to solve.[20] Values of n such that the smallest solution of is greater than the smallest solution for any smaller value of n are

1, 2, 5, 10, 13, 29, 46, 53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, 1621, 2389, 3061, 3469, 4621, 4789, 4909, 5581, 6301, 6829, 8269, 8941, 9949, ... (sequence A033316 in the OEIS).

(For these records, see OEISA033315 for x and OEISA033319 for y.)

List of fundamental solutions of Pell equations

The following is a list of the fundamental solution to with n ≤ 128. For square n, there is no solution except (1, 0). The values of x are sequence A002350 and those of y are sequence A002349 in OEIS, or A033313 and A033317 in OEIS with square n skipped.

n x y n x y n x y n x y
1 - - 33 23 4 65 129 16 97 62809633 6377352
2 3 2 34 35 6 66 65 8 98 99 10
3 2 1 35 6 1 67 48842 5967 99 10 1
4 - - 36 - - 68 33 4 100 - -
5 9 4 37 73 12 69 7775 936 101 201 20
6 5 2 38 37 6 70 251 30 102 101 10
7 8 3 39 25 4 71 3480 413 103 227528 22419
8 3 1 40 19 3 72 17 2 104 51 5
9 - - 41 2049 320 73 2281249 267000 105 41 4
10 19 6 42 13 2 74 3699 430 106 32080051 3115890
11 10 3 43 3482 531 75 26 3 107 962 93
12 7 2 44 199 30 76 57799 6630 108 1351 130
13 649 180 45 161 24 77 351 40 109 158070671986249 15140424455100
14 15 4 46 24335 3588 78 53 6 110 21 2
15 4 1 47 48 7 79 80 9 111 295 28
16 - - 48 7 1 80 9 1 112 127 12
17 33 8 49 - - 81 - - 113 1204353 113296
18 17 4 50 99 14 82 163 18 114 1025 96
19 170 39 51 50 7 83 82 9 115 1126 105
20 9 2 52 649 90 84 55 6 116 9801 910
21 55 12 53 66249 9100 85 285769 30996 117 649 60
22 197 42 54 485 66 86 10405 1122 118 306917 28254
23 24 5 55 89 12 87 28 3 119 120 11
24 5 1 56 15 2 88 197 21 120 11 1
25 - - 57 151 20 89 500001 53000 121 - -
26 51 10 58 19603 2574 90 19 2 122 243 22
27 26 5 59 530 69 91 1574 165 123 122 11
28 127 24 60 31 4 92 1151 120 124 4620799 414960
29 9801 1820 61 1766319049 226153980 93 12151 1260 125 930249 83204
30 11 2 62 63 8 94 2143295 221064 126 449 40
31 1520 273 63 8 1 95 39 4 127 4730624 419775
32 17 3 64 - - 96 49 5 128 577 51

Connections

Pell's equation has connections to several other important subjects in mathematics.

Algebraic number theory

Pell's equation is closely related to the theory of algebraic numbers, as the formula

is the norm for the ring and for the closely related quadratic field . Thus, a pair of integers solves Pell's equation if and only if is a unit with norm 1 in .[21] Dirichlet's unit theorem, that all units of can be expressed as powers of a single fundamental unit (and multiplication by a sign), is an algebraic restatement of the fact that all solutions to the Pell equation can be generated from the fundamental solution.[22] The fundamental unit can in general be found by solving a Pell-like equation but it does not always correspond directly to the fundamental solution of Pell's equation itself, because the fundamental unit may have norm −1 rather than 1 and its coefficients may be half integers rather than integers.

Chebyshev polynomials

Demeyer mentions a connection between Pell's equation and the Chebyshev polynomials: If and are the Chebyshev polynomials of the first and second kind, respectively, then these polynomials satisfy a form of Pell's equation in any polynomial ring , with :[23]

Thus, these polynomials can be generated by the standard technique for Pell equations of taking powers of a fundamental solution:

It may further be observed that, if are the solutions to any integer Pell equation, then and .[24]

Continued fractions

A general development of solutions of Pell's equation in terms of continued fractions of can be presented, as the solutions x and y are approximates to the square root of n and thus are a special case of continued fraction approximations for quadratic irrationals.[16]

The relationship to the continued fractions implies that the solutions to Pell's equation form a semigroup subset of the modular group. Thus, for example, if p and q satisfy Pell's equation, then

is a matrix of unit determinant. Products of such matrices take exactly the same form, and thus all such products yield solutions to Pell's equation. This can be understood in part to arise from the fact that successive convergents of a continued fraction share the same property: If pk−1/qk−1 and pk/qk are two successive convergents of a continued fraction, then the matrix

has determinant (−1)k.

Smooth numbers

Størmer's theorem applies Pell equations to find pairs of consecutive smooth numbers, positive integers whose prime factors are all smaller than a given value.[25][26] As part of this theory, Størmer also investigated divisibility relations among solutions to Pell's equation; in particular, he showed that each solution other than the fundamental solution has a prime factor that does not divide n.[25]

The negative Pell equation

The negative Pell equation is given by

It has also been extensively studied; it can be solved by the same method of continued fractions and will have solutions if and only if the length of the period of the continued fraction of (OEISA003285) is odd. However it is not known which roots have odd period lengths and therefore not known when the negative Pell equation is solvable. A necessary (but not sufficient) condition for solvability is that n is not divisible by 4 or by a prime of form 4k + 3.[note 3] Thus, for example, x2 − 3ny2 = −1 and x2 − 4ny2 = −1 are never solvable, but x2 − 5ny2 = −1 may be,[27] such as when n = 13 or 17, though not when n = 41 or 61.

The first few numbers n for which x2 − ny2 = −1 is solvable are

1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, ... (sequence A031396 in the OEIS).

The proportion of square-free n divisible by k primes of the form 4m + 1 for which the negative Pell equation is solvable is at least 40%.[28] If the negative Pell equation does have a solution for a particular n, its fundamental solution leads to the fundamental one for the positive case by squaring both sides of the defining equation:

implies

As stated above, if the negative Pell equation is solvable, a solution can be found using the method of continued fractions as in the positive Pell's equation. The recursion relation works slightly differently however. Since , the next solution is determined in terms of whenever there is a match, that is, when is odd. The resulting recursion relation is (modulo a minus sign which is immaterial due to the quadratic nature of the equation)

,

which gives an infinite tower of solutions to the negative Pell's equation.

The following is a list of the smallest solution to with n ≤ 512, if solvable. The values of x are sequence A130226 and those of y are sequence A130227 in OEIS, these two OEIS sequence only list the n such that this equation is solvable.

n x y n x y n x y n x y
2 1 1 106 4005 389 241 71011068 4574225 365 3458 181
5 2 1 109 8890182 851525 250 4443 281 370 327 17
10 3 1 113 776 73 257 16 1 373 5118 265
13 18 5 122 11 1 265 6072 373 389 1282 65
17 4 1 125 682 61 269 82 5 394 395023035 19900973
26 5 1 130 57 5 274 1407 85 397 20478302982 1027776565
29 70 13 137 1744 149 277 8920484118 535979945 401 20 1
37 6 1 145 12 1 281 1063532 63445 409 111921796968 5534176685
41 32 5 149 113582 9305 290 17 1 421 44042445696821418 2146497463530785
50 7 1 157 4832118 385645 293 2482 145 425 268 13
53 182 25 170 13 1 298 409557 23725 433 7230660684 347483377
58 99 13 173 1118 85 313 126862368 7170685 442 21 1
61 29718 3805 181 1111225770 82596761 314 443 25 445 4662 221
65 8 1 185 68 5 317 352618 19805 449 189471332 8941705
73 1068 125 193 1764132 126985 325 18 1 457 59089951584 2764111349
74 43 5 197 14 1 337 1015827336 55335641 458 107 5
82 9 1 202 3141 221 338 239 13 461 24314110 1132421
85 378 41 218 251 17 346 93 5 481 964140 43961
89 500 53 226 15 1 349 9210 493 485 22 1
97 5604 569 229 1710 113 353 71264 3793 493 683982 30805
101 10 1 233 23156 1517 362 19 1 509 395727950 17540333

For the smallest solutions of x2ny2 = ±1, the values of x are sequence A006702 and those of y are sequence A006703 in OEIS, or A077232 and A077233 in OEIS with square n skipped.

Generalized Pell's equation

The equation

is called the generalized[citation needed] (or general[16]) Pell's equation. Like , cases such as and are not always solvable (see OEIS sequence A261246 and this generalized Pell equation solver). The equation is the corresponding Pell's resolvent.[16] A recursive algorithm was given by Lagrange in 1768 for solving the equation, reducing the problem to the case .[29][30] Such solutions can be derived using the continued fractions method as outlined above.

If is a solution to and is a solution to then such that is a solution to , a principle named the multiplicative principle.[16]

Solutions to the generalized Pell's equation are used for solving certain Diophantine equations and units of certain rings,[31][32] and they arise in the study of SIC-POVMs in quantum information theory.[33]

The equation

is similar to the resolvent in that if a minimal solution to can be found then all solutions of the equation can be generated in a similar manner to the case . For certain , solutions to can be generated from those with , in that if then every third solution to has even, generating a solution to .[16]

Notes

  1. ^ In Euler's Vollständige Anleitung zur Algebra (pp. 227 ff), he presents a solution to Pell's equation which was taken from John Wallis' Commercium epistolicum, specifically, Letter 17 (Epistola XVII) and Letter 19 (Epistola XIX) of:
    • Wallis, John, ed. (1658). Commercium epistolicum, de Quaestionibus quibusdam Mathematicis nuper habitum [Correspondence, about some mathematical inquiries recently undertaken] (in English, Latin, and French). Oxford, England: A. Lichfield. The letters are in Latin. Letter 17 appears on pp. 56–72. Letter 19 appears on pp. 81–91.
    • French translations of Wallis' letters: Fermat, Pierre de (1896). Tannery, Paul; Henry, Charles (eds.). Oeuvres de Fermat (in French and Latin). Vol. 3rd vol. Paris, France: Gauthier-Villars et fils. Letter 17 appears on pp. 457–480. Letter 19 appears on pp. 490–503.
    Wallis' letters showing a solution to the Pell's equation also appear in volume 2 of Wallis' Opera mathematica (1693), which includes articles by John Pell:
    • Wallis, John (1693). Opera mathematica: de Algebra Tractatus; Historicus & Practicus [Mathematical works: Treatise on Algebra; historical and as presently practiced] (in Latin, English, and French). Vol. 2nd vol. Oxford, England. Letter 17 is on pp. 789–798; letter 19 is on pp. 802–806. See also Pell's articles, where Wallis mentions (pp. 235, 236, 244) that Pell's methods are applicable to the solution of Diophantine equations:
    • De Algebra D. Johannis Pellii; & speciatim de Problematis imperfecte determinatis. (On Algebra by Dr. John Pell and especially on an incompletely determined problem), pp. 234–236.
    • Methodi Pellianae Specimen. (Example of Pell's method), pp. 238–244.
    • Specimen aliud Methodi Pellianae. (Another example of Pell's method), pp. 244–246.
    See also:
  2. ^ Teutsch is an obsolete form of Deutsch, meaning "German". Free E-book: Teutsche Algebra (Google Books)
  3. ^ This is because the Pell equation implies that −1 is a quadratic residue modulo n.

References

  1. ^ O'Connor, J. J.; Robertson, E. F. (February 2002). "Pell's Equation". School of Mathematics and Statistics, University of St Andrews, Scotland. Retrieved 13 July 2020.
  2. ^ Dunham, William. "Number theory – Number theory in the East". Encyclopedia Britannica. Retrieved 4 January 2020.
  3. ^ As early as 1732–1733 Euler believed that John Pell had developed a method to solve Pell's equation, even though Euler knew that Wallis had developed a method to solve it (although William Brouncker had actually done most of the work):
    • Euler, Leonhard (1732–1733). "De solutione problematum Diophantaeorum per numeros integros" [On the solution of Diophantine problems by integers]. Commentarii Academiae Scientiarum Imperialis Petropolitanae (Memoirs of the Imperial Academy of Sciences at St. Petersburg). 6: 175–188. From p. 182: "At si a huiusmodi fuerit numerus, qui nullo modo ad illas formulas potest reduci, peculiaris ad invenienda p et q adhibenda est methodus, qua olim iam usi sunt Pellius et Fermatius." (But if such an a be a number that can be reduced in no way to these formulas, the specific method for finding p and q is applied which Pell and Fermat have used for some time now.) From p. 183: "§. 19. Methodus haec extat descripta in operibus Wallisii, et hanc ob rem eam hic fusius non-expono." (§. 19. This method exists described in the works of Wallis, and for this reason I do not present it here in more detail.)
    • Lettre IX. Euler à Goldbach, dated 10 August 1750 in: Fuss, P.H., ed. (1843). Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle … [Mathematical and physical correspondence of some famous geometers of the 18th century …] (in French, Latin, and German). St. Petersburg, Russia. p. 37. From page 37: "Pro hujusmodi quaestionibus solvendis excogitavit D. Pell Anglus peculiarem methodum in Wallisii operibus expositam." (For solving such questions, the Englishman Dr. Pell devised a singular method [which is] shown in Wallis' works.)
    • Euler, Leonhard (1771). Vollständige Anleitung zur Algebra, II. Theil [Complete Introduction to Algebra, Part 2] (in German). Kayserlichen Akademie der Wissenschaften (Imperial Academy of Sciences): St. Petersburg, Russia. p. 227. From p. 227: "§98. Hierzu hat vormals ein gelehrter Engländer, Namens Pell, eine ganz sinnreiche Methode erfunden, welche wir hier erklären wollen." (§.98 Concerning this, a learned Englishman by the name of Pell has previously found a quite ingenious method, which we will explain here.)
    • English translation: Euler, Leonhard (1810). Elements of Algebra …. Vol. 2nd vol. (2nd ed.). London, England: J. Johnson. p. 78.
    • Heath, Thomas L. (1910). Diophantus of Alexandria : A Study in the History of Greek Algebra. Cambridge, England: Cambridge University Press. p. 286. See especially footnote 4.
  4. ^ a b Tattersall, James (2000). "Elementary Number Theory in Nine Chapters" (PDF). Choice Reviews Online. 37 (10). Cambridge: 274. doi:10.5860/choice.37-5721. S2CID 118948378. Archived from the original (PDF) on 15 February 2020.
  5. ^ a b c Knorr, Wilbur R. (1976), "Archimedes and the measurement of the circle: a new interpretation", Archive for History of Exact Sciences, 15 (2): 115–140, doi:10.1007/bf00348496, MR 0497462, S2CID 120954547.
  6. ^ O'Connor, John J.; Robertson, Edmund F., "Baudhayana", MacTutor History of Mathematics Archive, University of St Andrews
  7. ^ Vardi, I. (1998). "Archimedes' Cattle Problem". American Mathematical Monthly. 105 (4). Mathematical Association of America: pp. 305–319. CiteSeerX 10.1.1.33.4288. doi:10.2307/2589706. JSTOR 2589706.
  8. ^ Fraser, Peter M. (1972). Ptolemaic Alexandria. Oxford University Press.
  9. ^ Weil, André (1972). Number Theory, an Approach Through History. Birkhäuser.
  10. ^ Izadi, Farzali (2015). "Congruent numbers via the Pell equation and its analogous counterpart" (PDF). Notes on Number Theory and Discrete Mathematics. 21: 70–78.
  11. ^ a b John Stillwell (2002), Mathematics and its history (2nd ed.), Springer, pp. 72–76, ISBN 978-0-387-95336-6
  12. ^ In February 1657, Pierre de Fermat wrote two letters about Pell's equation. One letter (in French) was addressed to Bernard Frénicle de Bessy, and the other (in Latin) was addressed to Kenelm Digby, whom it reached via Thomas White and then William Brouncker.
    • Fermat, Pierre de (1894). Tannery, Paul; Henry, Charles (eds.). Oeuvres de Fermat (in French and Latin). Vol. 2nd vol. Paris, France: Gauthier-Villars et fils. pp. 333–335. The letter to Frénicle appears on pp. 333–334; the letter to Digby, on pp. 334–335.
    The letter in Latin to Digby is translated into French in:
    • Fermat, Pierre de (1896). Tannery, Paul; Henry, Charles (eds.). Oeuvres de Fermat (in French and Latin). Vol. 3rd vol. Paris, France: Gauthier-Villars et fils. pp. 312–313.
    Both letters are translated (in part) into English in:
  13. ^ In January 1658, at the end of Epistola XIX (letter 19), Wallis effusively congratulated Brouncker for his victory in a battle of wits against Fermat regarding the solution of Pell's equation. From p. 807 of (Wallis, 1693): "Et quidem cum Vir Nobilissimus, utut hac sibi suisque tam peculiaria putaverit, & altis impervia, (quippe non omnis fert omnia tellus) ut ab Anglis haud speraverit solutionem; profiteatur tamen qu'il sera pourtant ravi d'estre destrompé par cet ingenieux & scavant Signieur; erit cur & ipse tibi gratuletur. Me quod attinet, humillimas est quod rependam gratias, quod in Victoriae tuae partem advocare dignatus es, … " (And indeed, Most Noble Sir [i.e., Viscount Brouncker], he [i.e., Fermat] might have thought [to have] all to himself such an esoteric [subject, i.e., Pell's equation] with its impenetrable profundities (for all land does not bear all things [i.e., not every nation can excel in everything]), so that he might hardly have expected a solution from the English; nevertheless, he avows that he will, however, be thrilled to be disabused by this ingenious and learned Lord [i.e., Brouncker]; it will be for that reason that he [i.e., Fermat] himself would congratulate you. Regarding myself, I requite with humble thanks your having deigned to call upon me to take part in your Victory, … ) [Note: The date at the end of Wallis' letter is "Jan. 20. 1657"; however, that date was according to the old Julian calendar that Britain finally discarded in 1752: most of the rest of Europe would have regarded that date as January 31, 1658. See Old Style and New Style dates#Transposition of historical event dates and possible date conflicts)
  14. ^ Rahn, Johann Heinrich (1668) [1659], Brancker, Thomas; Pell (eds.), An introduction to algebra
  15. ^ "Solution d'un Problème d'Arithmétique", in Joseph Alfred Serret (Ed.), Œuvres de Lagrange, vol. 1, pp. 671–731, 1867.
  16. ^ a b c d e f Andreescu, Titu; Andrica, Dorin (2015). Quadratic Diophantine Equations. New York: Springer. ISBN 978-0-387-35156-8.
  17. ^ a b c d Lenstra, H. W., Jr. (2002), "Solving the Pell Equation" (PDF), Notices of the American Mathematical Society, 49 (2): 182–192, MR 1875156{{citation}}: CS1 maint: multiple names: authors list (link)
  18. ^ Hallgren, Sean (2007), "Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem", Journal of the ACM, 54 (1): 1–19, doi:10.1145/1206035.1206039, S2CID 948064
  19. ^ Schmidt, A.; Völlmer, U. (2005), "Polynomial time quantum algorithm for the computation of the unit group of a number field" (PDF), Proceedings of the thirty-seventh annual ACM symposium on Theory of computing - STOC '05, New York: ACM, Symposium on Theory of Computing, pp. 475–480, CiteSeerX 10.1.1.420.6344, doi:10.1145/1060590.1060661, ISBN 1581139608, S2CID 6654142
  20. ^ Prime Curios!: 313
  21. ^ Clark, Pete. "The Pell Equation" (PDF). University of Georgia.
  22. ^ Conrad, Keith. "Dirichlet's Unit Theorem" (PDF). Retrieved 14 July 2020.
  23. ^ Demeyer, Jeroen (2007), Diophantine Sets over Polynomial Rings and Hilbert's Tenth Problem for Function Fields (PDF), PhD thesis, Ghent University, p. 70, archived from the original (PDF) on 2 July 2007, retrieved 27 February 2009
  24. ^ Barbeau, Edward J. (2003), Pell's Equation, Problem Books in Mathematics, Springer-Verlag, pp. Ch. 3, ISBN 0-387-95529-1, MR 1949691
  25. ^ a b Størmer, Carl (1897). "Quelques théorèmes sur l'équation de Pell et leurs applications". Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I (2).
  26. ^ Lehmer, D. H. (1964). "On a Problem of Størmer". Illinois Journal of Mathematics. 8: 57–79. doi:10.1215/ijm/1256067456. MR 0158849.
  27. ^ Wang, Jiaqi; Cai, Lide (December 2013). "The solvability of negative Pell equation" (PDF). Tsinghua College: 5–6.
  28. ^ Cremona, John E.; Odoni, R. W. K. (1989), "Some density results for negative Pell equations; an application of graph theory", Journal of the London Mathematical Society, Second Series, 39 (1): 16–28, doi:10.1112/jlms/s2-39.1.16, ISSN 0024-6107
  29. ^ Lagrange, Joseph-Louis (1736-1813) Auteur du texte (1867–1892). Oeuvres de Lagrange. T. 2 / publiées par les soins de M. J.-A. Serret [et G. Darboux] ; [précédé d'une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre].{{cite book}}: CS1 maint: numeric names: authors list (link)
  30. ^ Matthews, Keith. "The Diophantine Equation x2 − Dy2 = N, D > 0" (PDF). Retrieved 20 July 2020.{{cite web}}: CS1 maint: url-status (link)
  31. ^ Bernstein, Leon (1 October 1975). "Truncated units in infinitely many algebraic number fields of degreen ≧4". Mathematische Annalen. 213 (3): 275–279. doi:10.1007/BF01350876. ISSN 1432-1807. S2CID 121165073.
  32. ^ Bernstein, Leon (1 March 1974). "On the Diophantine Equation x(x + d)(x + 2d) +y(y + d)(y + 2d) = z(z + d)(z + 2d)". Canadian Mathematical Bulletin. 17 (1): 27–34. doi:10.4153/CMB-1974-005-5. ISSN 0008-4395.
  33. ^ Appleby, Marcus; Flammia, Steven; McConnell, Gary; Yard, Jon (August 2017). "SICs and Algebraic Number Theory". Foundations of Physics. 47 (8): 1042–1059. arXiv:1701.05200. Bibcode:2017FoPh...47.1042A. doi:10.1007/s10701-017-0090-7. ISSN 0015-9018. S2CID 119334103.

Further reading

External links