Jump to content

Korteweg-de Vries-Burgers' equation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m clean up spacing around commas and other punctuation fixes, replaced: ,A → , A, ,C → , C, ,S → , S, ,u → , u
cleaned up the article. Removed unnecessary references. Made a distinction between KdV-Burgers and mKdV-Burgers.
Line 1: Line 1:
The '''modified KdV–Burgers equation''' is a nonlinear [[partial differential equation]]<ref>Andrei D. Polyanin, Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, second edition, p&nbsp;1041 CRC PRESS</ref>
The '''Korteweg-de Vries–Burgers equation''' is a nonlinear [[partial differential equation]]:


:<math>u_t+u_{xxx}-\alpha u^2\,u_x - \beta u_{xx}=0. </math>
:<math>u_t+\alpha u_{xxx} + uu_x - \beta u_{xx}=0. </math>

The equation gives a description for nonlinear waves in dispersive-dissipative media by combining the nonlinear and [[Dispersion_relation|dispersive]] elements from the [[KdV equation]] with the [[Dissipative_system|dissipative]] element from [[Burgers' equation]].{{sfn | Polyanin | Zaitsev | 2003}}

The '''modified KdV-Burgers equation''' can be written as:{{sfn | Wang | 1996}}

:<math>u_t+ a u_{xxx} + u^2u_x - b u_{xx}=0. </math>


==See also==
==See also==
Line 8: Line 14:
*[[Unnormalized modified KdV equation|modified KdV equation]]
*[[Unnormalized modified KdV equation|modified KdV equation]]


==References==
==Notes==
{{reflist}}
<references/>


==References==
#Graham W. Griffiths William E. Shiesser Traveling Wave Analysis of Partial Differential Equations Academy Press
* {{cite book | last=Polyanin | first=Andrei D. | last2=Zaitsev | first2=Valentin F. | title=Handbook of Nonlinear Partial Differential Equations | publisher=Chapman and Hall/CRC | publication-place=Boca Raton, Fla | year=2003 | isbn=978-1-58488-355-5|chapter=
# Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
9.1.7. Burgers–Korteweg–de Vries Equation and Other Equation}}
#Inna Shingareva, Carlos Lizárraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple Springer.
* {{cite journal | last=Wang | first=Mingliang | title=Exact solutions for a compound KdV-Burgers equation | journal=Physics Letters A | volume=213 | issue=5-6 | date=1996 | doi=10.1016/0375-9601(96)00103-X | pages=279–287}}
#Eryk Infeld and George Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge 2000
#Saber Elaydi, An Introduction to Difference Equationns, Springer 2000
#Dongming Wang, Elimination Practice, Imperial College Press 2004
# David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 {{ISBN|9780387983004}}
# George Articolo Partial Differential Equations and Boundary Value Problems with Maple V Academic Press 1998 {{ISBN|9780120644759}}


{{DEFAULTSORT:Modified KdV-Burgers equation}}
{{DEFAULTSORT:Modified KdV-Burgers equation}}

Revision as of 09:30, 14 June 2024

The Korteweg-de Vries–Burgers equation is a nonlinear partial differential equation:

The equation gives a description for nonlinear waves in dispersive-dissipative media by combining the nonlinear and dispersive elements from the KdV equation with the dissipative element from Burgers' equation.[1]

The modified KdV-Burgers equation can be written as:[2]

See also

Notes

References

  • Polyanin, Andrei D.; Zaitsev, Valentin F. (2003). "9.1.7. Burgers–Korteweg–de Vries Equation and Other Equation". Handbook of Nonlinear Partial Differential Equations. Boca Raton, Fla: Chapman and Hall/CRC. ISBN 978-1-58488-355-5.
  • Wang, Mingliang (1996). "Exact solutions for a compound KdV-Burgers equation". Physics Letters A. 213 (5–6): 279–287. doi:10.1016/0375-9601(96)00103-X.