Jump to content

Talk:Decibel: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Babar77 (talk | contribs)
Babar77 (talk | contribs)
Line 183: Line 183:
== Correct explination of dBm and dBu ==
== Correct explination of dBm and dBu ==


dBm (or dBmW) and dBW are independent of impedance. 1mW is 1mW regardless of the impedance it driven into. RF engineers typically use dBm to measure the power into a 50&Omega load.
dBm (or dBmW) and dBW are independent of impedance. 1mW is 1mW regardless of the impedance it driven into. RF engineers typically use dBm to measure the power into a 50Ω load.


dBu (or dBv) is dependant on 600&Omega when you are trying to relate it to dBm, because 0dBm = 0dBu when the load used is 600&Omega. The 600&Omega is not important to audio, rather it originated from the telephone companies. 600&Omega was the characteristic impedance of telephone wire when stretched miles (or kilometers) over land. Somewhere along the way (I have no clue why), audio started using the same measurements, even though the characteristic impedance of mic cables is rarely 600&Omega let alone consistent or even long enough for this to matter. I suspect this came from the fact that some of the first audio engineers came from the telecom industry or were educated in universities educating in the practices used in the telecom world. The use of dBu in audio is diminishing greatly because it is being substituted for the more appropriate dBV, as output and input stages are being properly designed for voltage transfer and not power transfer.
dBu (or dBv) is dependant on 600Ω when you are trying to relate it to dBm, because dBm = dBu when the load used is 600Ω. The 600Ω is not important to audio, rather it originated from the telephone companies. 600Ω was the characteristic impedance of telephone wire when stretched miles (or kilometers) over land. Somewhere along the way (I have no clue why), audio started using the same measurements, even though the characteristic impedance of microphone cables is rarely 600Ω let alone consistent or even long enough for this to matter. I suspect this came from the fact that some of the first audio engineers came from the telecom industry or were educated in universities teaching the practices used in the telecom world. The use of dBu in audio is diminishing greatly because it is being substituted for the more appropriate dBV as output and input stages are being properly designed for voltage transfer and not power transfer.


[[Image:Circuit.jpg]]
[[Image:Circuit.jpg]]

[[Image:p-v2r.jpg]]
[[Image:p-v2r.jpg]]

[[Image:v-pr.jpg]]
[[Image:v-pr.jpg]]

[[Image:0.755V.jpg]]
[[Image:0755VRMS.jpg]]


This is also the first time I've heard that the "u" in dBu means "unloaded." I've been told that the "u" was used to remove the "v" to avoid confusion with dB(1mV). Can anyone confirm this?
This is also the first time I've heard that the "u" in dBu means "unloaded." I've been told that the "u" was used to remove the "v" to avoid confusion with dB(1mV). Can anyone confirm this?

Revision as of 11:27, 11 December 2005

Bel vs. Decibel, which came first?

The part until the next line has been moved over from Talk:Decibel: Earlier I thought Alexander Graham Bell coined the term "bel" as a measurement of sound and that it was later determined to be so coarse that 1/10th of it proved more useful (the decibel). On seeing someone on this page claim that Bell coined the phrase "decibel" I looked up its history in the Oxford English Dictionary. The OED has their earliest recorded uses in 1928 and 1929; Bell died in 1922.

  • the earliest few quotations the OED has on file for "decibel": "1928 Electrical Communication VII. I. 33/2 If common logarithms are used, the reproduction is obtained in Decibels. 1929 W. H. MARTIN in Bell System Techn. Jrnl. VIII. 2 The Bell System has adopted the name ?decibel? for the ?transmission unit?, based on a power ratio of 10·1... For convenience, the symbol ?db? will be employed to indicate the name ?decibel?. 1930 Discovery Dec. 398/2 The band-pass filter, which follows the low frequency modulator, allows the lower side-band to pass with an attenuation of six decibels."
  • the earliest few quotations the OED has on file for "bel": "1929 W. H. MARTIN in Bell System Techn. Jrnl. VIII. 2 It was further suggested that the naperian unit be called the ?neper? and that the fundamental decimal unit be called the ?bel?, these names being derived from..Napier..and Alexander Graham Bell. 1930 Gloss. Terms Electr. Engin. (B.S.I.) 13 The bel is a unit used in the comparison of the magnitudes of power, voltages or currents at two different points in a network of lines or apparatus."

Clearly the term "bel" was in use before the term for 1/10th of it came about. Yet it seems odd to me that the terms did not see print for almost a decade. Anyone? Specifically, I'd like to know who made the suggestion for the terms "napier" and "bel." I suspect it wasn't Alexander Graham Bell. --Koyaanis Qatsi

I've generalised the article a bit, since decibels are not just used for acoustics (e.g. they're used to measure the gain of amplifiers and loss of transmission lines.) -- DrBob

Acoustic decibel reference

How likely is it, if I find a claim that a sound is at, say, 120dB, that the reference level is indeed 20 micropascals? Similarly, if author A claims that one sound is so many dB, and author B claims that one sound is so many dB, how safe is it to compare the measures given, if neither indicates the reference level? --Ryguasu 04:38 Feb 26, 2003 (UTC)

Watts vs watts per square meter

This 0 (zero), decibel level also corresponds to one billionth of a watt, 0.000 000 000 001 watt, roughly a mosquito flying 10 feet away.

Watt would be total power, not related to distance; also http://ccms.ntu.edu.tw/~karchung/decibels/decibels1.ppt says 40 dB. - Patrick 09:52 Apr 16, 2003 (UTC)

List of acoustic decibel levels

It'd be nice to have a list of example decibel levels on this article - Khendon

Decibel vs Bel, separate article for acoustics or not

  1. Do acoustic decibels and general decibels really need to be separate articles?
  2. Since decibel is much more commonly used than bel, shouldn't it be the title of the article? kind of like kilogram being the standard SI unit, even though it is a basic unit with a prefix.

- Omegatron 00:47, Apr 17, 2004 (UTC)

Agreed Omegatron, I think this article should move to decibel - anyone disagree? -- Rissa 00:45, 6 Jun 2004 (UTC)
I am moving it back to decibel. It is much more common. it sounds like the richter scale uses bels without calling it as such, but EVERYTHING else uses decibels. - Omegatron 14:12, Jun 27, 2004 (UTC)

20 micropascals or 2 pascals???

This seems to say that dB SPL is referenced to both 20 micropascals and 2 pascals. I'm sure the standard (used for dBA, etc.) is only one of those. Which is it? - Omegatron 17:43, Nov 23, 2004 (UTC)

20 micro. someone put in 2 N/m^2 without any exponent for some reason. fixed now. - Omegatron 17:51, Nov 23, 2004 (UTC)

which dB?

Please make sure the reference for all values listed as only dB are clear from context. (dB SPL, dBu, etc.) - Omegatron 17:43, Nov 23, 2004 (UTC)

Theatre?

One of the values in the table is "Theatre". That's too vague to be at all useful (to me, at least). An empty theatre? A filled theatre of whispering people? Sitting 5m away from Hamlet giving his soliloquy? A theatre showing a Jerry Bruckheimer movie? (From context, probably not the last one, but that's still a decent range.)

It's not a very explanatory entry, and would be better replaced with something more obvious. 30 dB is fairly quiet, the sort of environment where most people could fall asleep. The table entry probably means a theatre full of people who aren't intentionally making any noise at all (just breathing and rustling about in those uncomfy theatre seats as they wait for the show to start - of course all polite people cease their conversation at that point ;). Unfortunately I can't think of an equivalent value that would be more descriptive at the moment. - toh 19:04, 2005 August 22 (UTC)

Kerbside vs Curbside

The original spelling in this article was by Heron on 18 Nov as Kerbside. This is fine. Unless you wish to remove the entire entry, please leave the spelling in its original sense. Ian Cairns 00:29, 8 Dec 2004 (UTC)

Not that it's terribly important, but the policy seems to be one of consistency for the whole page:
- Omegatron 15:19, Dec 8, 2004 (UTC)

dBA incorrect?

according to whom? - Omegatron 02:57, Dec 12, 2004 (UTC)

Exactly my question. The link is to dB(A), and that's what I've seen the manufacturers use ([1]).--Jerryseinfeld 18:38, 23 Jan 2005 (UTC)
Well yeah, manufacturers use it all the time (not just "historical sources"). Someone is claiming that it's not official, though, because it implies a reference to an "A" unit, like dBV implies a reference to a volt. Either this is a small minority opinion, or it's a new opinion that just hasn't gained a foothold yet, like binary prefixes like "mebibyte". My personal opinion is that it's fine to use it the way it is. It's just a shorthand way of saying it's A-weighted. Like saying miles (survey). In addition, the standard acoustic version is just "dB" with no qualifier (it should be dB SPL or dBSPL or dB(SPL)) which leads laymen to believe that a dB is a unit by itself. I would much rather see people using dB SPL than see them stop using dB (A). - Omegatron 20:08, Jan 23, 2005 (UTC)

Unit symbol dB rather than dBA, dB(A) etc

When making acoustical measurements and determining, for example, an A-weighted sound pressure level, the measured sound pressure is still compared with the reference sound pressure (20 μPa), and the unit symbol should still be dB. This is standard usage in definitions given in modern ISO and IEC standards, and is now mandated for ANSI standards developed by the Acoustical Society of America in their ASACOS rules. The preferred form of expression is "the A-weighted sound level was xx dB" or LA = xx dB.

There are many historical sources which use "dBA", or "dB(A)" or talk about "dBA levels", and these should be understood as indicating A-weighted sound levels, although the unit symbol is incorrect.

Unit symbols such as dBu or dBm indicate the reference value used to determine the level, and thus are correct. But the A denotes a frequency weighting, not a reference quantity.

Potential inclusion in SI

Any citation to support the claim that "(BIPM) has recommended its inclusion in the SI system."?

  • This doesn't even seem plausible to me—it's outside BIPM's bailiwick. More likely the Comité International des Poids et Mesures (CIPM), or the Consultative Committee on Units which is, I think, under the CIPM and advises the CGPM

Also, does that recommendation include the neper as well as the decibel? Gene Nygaard 01:51, 19 Jan 2005 (UTC)

RMS

"dB(0.775 V)—(usually RMS) voltage amplitude"

Is it ever not RMS? Every site I see says it is referenced to RMS. - Omegatron 02:50, Jan 19, 2005 (UTC)

Is this website violating the GNU License??

http://encyclopedia.laborlawtalk.com/Decibel

if so, i find it funny that a "law" site is guilty of copyright violation.

No, it does not appear so. 203.26.206.129 07:09, 13 Apr 2005 (UTC)
Read the bottom of the page: "This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Decibel"." RoceKiller 10:16, 14 Apr 2005 (UTC)

dB Doubling Versus "Perceived" Doubling

So I always thought that 10dB represented a doubling of the sound intensity but now I find out that this may be technically incorrect. That 3dB represents a true doubling of sound pressure and that 10dB is where the human ear perceives the pressure as doubling. Can anyone confirm this?

It would be nice for the article to clarify this.

I'm not sure of the actual answer, but these are where you should look. I'm going to try to figure it out, too: 3.01 dB corresponds to a doubling of sound power, not sound pressure. How we perceive it depends on amplitude and frequency, and would be derived from the equal-loudness contour. Also see the units of perceived loudness, phon and sone. - Omegatron 16:36, Apr 29, 2005 (UTC)
Wow. You helped me realize there are a lot of confusing, overlapping sound measurement articles. I've created a template to keep them tied together: Template:Sound measurements - Omegatron 16:49, Apr 29, 2005 (UTC)

Amplitude vs power

I'm still sketchy on the relationship between power and amplitude and dB. You can't convert from a power to a dB to a voltage, for instance, unless you know a load resistance. I'm especially confused because you can't convert amplitude --> dBFS --> power in digital land which doesn't even have load resistance. What does "power" even mean for digital?? - Omegatron 20:13, Apr 29, 2005 (UTC)

YEEARG - and I had explicitly edited this article to correct this, and it has been reverted.

decibels are DEFINED AS 10log10(x) - PERIOD. This 20log10 crap is WRONG! dB are NEVER 20log10 of ANYTHING.

Now, when you are talking about dBWatts (or any derived units like dBmW) you can compute the CHANGE in level by computing 20log10(V1/V2), but that is a simplification of the full formula 10log10( (V1*V1/R)/(V2*V2/R) ).

But it is also perfectly valid to speak of dBV - and a 10 dB increase of a 0dBv signal yeilds 10 volts, NOT 100!

dB absent any unit is a RELATIVE measurement - I can speak of a 6dB increase of my bank account (a thing much to be desired), but I cannot speak of having 6dB in my bank account - I can say I have 36dB$ in the bank, but I *have* to supply a unit for an absolute measure to be meaningful.

I design test equipment for a living, and this confusion causes us NO END of problems. People will increase the deivation of an FM signal by 2, and expect to see the audio spectrum analyzer increase by 6 dB. The spec-an is measuring deviation, so a x2 increase is 10log10(2) = 3dB. To get a 6dB increase we would have to be reporting (kHz deviation)^2 - now what physical property does that describe?

Please - dB is 10log10(x) ALWAYS - not 20log10!

Revert the reversion of my changes, please!

N0YKG 10 May 2005

Here's your chance to be bold and put the above explanation why 20 log 10(X/Xref) is wrong into the article. Though I admit I don't see why it's wrong to say 20 log ((V1/V2)) as opposed to 10 log((V1/V2)^2), assuming the circuit impedance is the same. dB should always be used to refer to ratios of power quantities, not to ratios of amplitude quantities...but we often cheat and say 20 log (amplitude/reference amplitude) --Wtshymanski 19:02, 10 May 2005 (UTC)[reply]
On the one hand, you say dB should only be used for power quantities, but then you say that dB could be used for your bank account. Also:
  • 0 VRMS = 0 dBV
  • 10 VRMS = 20 dBV
  • 100 VRMS = 40 dBV
According to this, which claims to be based on the ANSI T1.523-2001 definitions, which I would download, except it costs $175 - Omegatron 20:21, May 10, 2005 (UTC)

Mark Phillips 28 June 2005

Ref the statement above that "a 10 dB increase of a 0dBv signal yeilds 10 volts, NOT 100!", a 10 dB increase means an increase in power of 10(10/10), i.e. an increase in power of 10 times. Assuming that the circuit impedance doesn't change whilst this increase is happening (nearly always true when the 'before' and 'after' measurements are made at the same place in a circuit or system), then to achieve this 10 times increase in power the voltage must increase by the square root of 10 (because power is proportional to the square of the voltage, for a constant impedance), i.e. by a factor of 3.162 (approx). Since, in your example, you started off with a voltage of 0 dBV, i.e. 1 volt, the 10 dB increase will actually yield 3.162 volts (approx). (Note that I have written 0 dBV rather than 0 dBv, because from the context I think that is what the author meant. The lower case v is now falling out of usage in favour of a lower case u - these indicate a reference level of 0.775 volts rather than the 1 volt reference indicated by the upper case V. On a finer point it is always preferable to set a space between the value and the units, in line with SI standards, although the decibel is not yet accepted as a 'unit' by SI.)
Excellent. Thank you. - Omegatron June 29, 2005 23:07 (UTC)
Be aware that there is a slight usage inconsistency between different fields. Originally, dB was always strictly a measure of relative power. This usage is preserved in physics. One can use 20·log10 of an amplitude ratio, but only when the "impedences" are the same, so that the dB result is still a measure of power. This usage is not strictly preserved in engineering, where for example electrical engineers may express a ratio of voltages as , even when V1 and V2 are measured at different points in the circuit, where the impedence differs. Anyone who calls a result in "dB", however, is simply mistaken. This unfortunate usage does, however, occur from time to time in engineering literature.--Srleffler 05:00, 28 November 2005 (UTC)[reply]

modern usage of bel

"According to the World's standardization organizations should sound power level regarding computers and other kinds of IT equipment be expressed in bels (B) instead of in decibels (dB). Sound power level is here expressed in bels for to avoid confusion between decibels for sound power level and decibels for sound pressure level [1,2,3,4,5]. The computer industry is the only product group that uses sound power in bels, even if other product declaration standards tell that one can use bel for stating sound power level for to avoid confusion with sound pressure level measures." - bels for sound power level

This is the only modern usage I can find of bels being used instead of decibels. - Omegatron 14:37, July 25, 2005 (UTC)

Krakatoa dB level

According to article linked site [2]:

310 (Normalized) KRAKATOA VOLCANO ERUPTION-1883 A.D.

The table in this article:

1,000 Krakatoa (1883)

The linked article at least has references listed; I wonder where the reference for the 1000 dB Krakatoa is. It sounds (no pun intended...) like an awful lot anyway, when similar extreme volcano eruptions are also listed at 300 dB there. -- Jugalator 21:55, 8 November 2005 (UTC)[reply]

I'm going to change it to 310. 1000 is a ridiculous amount, given the exponential nature of the decibel system. Crovax 04:23, 10 November 2005 (UTC)

Measurements like this need a distance associated with them. Meaningless otherwise. — Omegatron 16:25, 11 November 2005 (UTC)[reply]

Here's some trustable measurements: [3], though they are of infrasound. — Omegatron 16:57, 11 November 2005 (UTC)[reply]

Definition

Somehow I didn't notice that the definition was changed from a power ratio to an acoustics measurement. [4] I think it should be a general power ratio. — Omegatron 22:36, 8 November 2005 (UTC)[reply]

Intensity and pressure

I deleted the statement "Neither ear drums nor microphones can convert sound intensity. We hear the pressure variations.", on the grounds that it is meaningless. There is only one physical phenomenon--molecules of air move and displace the eardrum, leading to detection of "sound". One can choose to characterize the motion of the molecules by their pressure or by the intensity of the wave. Which you choose is irrelevant. One can't even say that the response of the ear is proportional to pressure rather than intensity, since the response is logarithmic and log(pressure) is proportional to log(intensity).--Srleffler 06:42, 28 November 2005 (UTC)[reply]

dBZ?

Where would dBZ fit in or is it an alias for something else here? [5] defines it as (under "Base reflectivity"):

decibels of Z, where Z represents the energy reflected back to the radar

Cburnett 23:08, 1 December 2005 (UTC)[reply]

"dBZ" an alias for "dBr", perhaps? Cburnett 23:09, 1 December 2005 (UTC)[reply]

Correct explination of dBm and dBu

dBm (or dBmW) and dBW are independent of impedance. 1mW is 1mW regardless of the impedance it driven into. RF engineers typically use dBm to measure the power into a 50Ω load.

dBu (or dBv) is dependant on 600Ω when you are trying to relate it to dBm, because dBm = dBu when the load used is 600Ω. The 600Ω is not important to audio, rather it originated from the telephone companies. 600Ω was the characteristic impedance of telephone wire when stretched miles (or kilometers) over land. Somewhere along the way (I have no clue why), audio started using the same measurements, even though the characteristic impedance of microphone cables is rarely 600Ω let alone consistent or even long enough for this to matter. I suspect this came from the fact that some of the first audio engineers came from the telecom industry or were educated in universities teaching the practices used in the telecom world. The use of dBu in audio is diminishing greatly because it is being substituted for the more appropriate dBV as output and input stages are being properly designed for voltage transfer and not power transfer.

File:P-v2r.jpg

File:V-pr.jpg

File:0755VRMS.jpg

This is also the first time I've heard that the "u" in dBu means "unloaded." I've been told that the "u" was used to remove the "v" to avoid confusion with dB(1mV). Can anyone confirm this? --Babar77 11:17, 11 December 2005 (UTC)[reply]