Jump to content

Modern searches for Lorentz violation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Cleaned up wording re. implications of low energies for Planck energies
m Wording cleanup re. potential misreadings.
Line 153: Line 153:
Lorentz violations could lead to otherwise forbidden effects at [[threshold energy]], for example a difference between the speed of photons and the limiting velocity of any particle having a charge structure (protons, electrons, neutrinos). This is because the [[dispersion relation]] is assumed to be modified in Lorentz violating [[effective field theory|EFT]] models such as [[Standard-Model Extension|SME]]. Depending on which of these particles travels faster or slower than the speed of light, effects such as the following can occur:<ref name=JacNeu>{{cite journal |author=Jacobson ''et al.''|title=Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics|journal=Physical Review D|volume=67|issue=12|year=2002|pages=124011|doi=10.1103/PhysRevD.67.124011|arxiv=hep-ph/0209264}}</ref><ref name=hohe />
Lorentz violations could lead to otherwise forbidden effects at [[threshold energy]], for example a difference between the speed of photons and the limiting velocity of any particle having a charge structure (protons, electrons, neutrinos). This is because the [[dispersion relation]] is assumed to be modified in Lorentz violating [[effective field theory|EFT]] models such as [[Standard-Model Extension|SME]]. Depending on which of these particles travels faster or slower than the speed of light, effects such as the following can occur:<ref name=JacNeu>{{cite journal |author=Jacobson ''et al.''|title=Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics|journal=Physical Review D|volume=67|issue=12|year=2002|pages=124011|doi=10.1103/PhysRevD.67.124011|arxiv=hep-ph/0209264}}</ref><ref name=hohe />


*''Photon decay'' at superluminal speed. These photons quickly decay into other particles, which means that high energy light cannot propagate over long distances. So the mere existence of high energy light from astronomic sources constrains possible deviations from the limiting velocity.
*''Photon decay'' at superluminal speed. These (hypothetical) high-energy photons would quickly decay into other particles, which means that high energy light cannot propagate over long distances. So the mere existence of high energy light from astronomic sources constrains possible deviations from the limiting velocity.
*''Vacuum [[Cherenkov radiation]]'' at superluminal speed of any particle (protons, electrons, neutrinos) having a charge structure. In this case, emission of [[Bremsstrahlung]] can occur, until the particle falls below threshold and subluminal speed is reached again. This is similar to the known Cherenkov radiation in media, in which particles are traveling faster than the phase velocity of light in that medium. Deviations from the limiting velocity can be constrained, by observing high energy particles of distant astronomic sources that reach Earth.
*''Vacuum [[Cherenkov radiation]]'' at superluminal speed of any particle (protons, electrons, neutrinos) having a charge structure. In this case, emission of [[Bremsstrahlung]] can occur, until the particle falls below threshold and subluminal speed is reached again. This is similar to the known Cherenkov radiation in media, in which particles are traveling faster than the phase velocity of light in that medium. Deviations from the limiting velocity can be constrained by observing high energy particles of distant astronomic sources that reach Earth.
*The rate of ''[[synchrotron radiation]]'' could be modified, if the limiting velocity between charged particles and photons is different.
*The rate of ''[[synchrotron radiation]]'' could be modified, if the limiting velocity between charged particles and photons is different.
*The ''[[Greisen–Zatsepin–Kuzmin limit]]'' could be evaded by Lorentz violating effects. However, recent measurements indicate that this limit really exists.
*The ''[[Greisen–Zatsepin–Kuzmin limit]]'' could be evaded by Lorentz violating effects. However, recent measurements indicate that this limit really exists.


Since astronomic measurements also contain additional assumptions – like the unknown conditions at the emission or along the path traversed by the particles, or the nature of the particles –, terrestrial measurements provide results of higher significance, even though the bounds are lower (the following bounds describe maximal deviations between the speed of light and the limiting velocity of matter):
Since astronomic measurements also contain additional assumptions – like the unknown conditions at the emission or along the path traversed by the particles, or the nature of the particles –, terrestrial measurements provide results of greater clarity, even though the bounds are lower (the following bounds describe maximal deviations between the speed of light and the limiting velocity of matter):


{|class=wikitable
{|class=wikitable

Revision as of 12:16, 9 June 2013

Motivations for modern searches for Lorentz violation are deviations from Lorentz invariance or symmetry (thus special relativity) and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity. Lorentz violations concern the fundamental predictions of special relativity, such as the principle of relativity, the constancy of the speed of light in all inertial frames of reference, and time dilation, as well as the predictions of the standard model of particle physics.

To assess and predict possible violations, test theories of special relativity and effective field theories (EFT) such as the Standard-Model Extension (SME) have been invented. These models introduce Lorentz and CPT violations through spontaneous symmetry breaking caused by hypothetical background fields, resulting in some sort of preferred frame effects. This could lead, for instance, to modifications of the dispersion relation, causing differences between the limiting velocity of matter and the speed of light. Also the parameterized post-Newtonian formalism as a test theory for general relativity can be used to describe preferred frame effects. Another model including different Lorentz violations is doubly special relativity (DSR), which preserves the Planck energy as an invariant maximum energy-scale, yet without having a preferred reference frame.

Both terrestrial and astronomical experiments have been carried out, and new experimental techniques have been introduced. No Lorentz violations could be measured thus far, and exceptions in which positive results were reported have been refuted or lack further confirmations. For discussions of many experiments, see Mattingly (2005).[1] For a detailed list of results of recent experimental searches, see Alan Kostelecký and Russell (2011).[2] See also the main article Tests of special relativity.

Speed of light

Terrestrial

Many terrestrial experiments have been conducted, mostly with optical resonators or in particle accelerators, by which deviations from the isotropy of the speed of light are tested. Anisotropy parameters are given, for instance, by the Robertson-Mansouri-Sexl test theory (RMS). This allows to distinguish between the relevant orientation and velocity dependent parameters. In modern variants of the Michelson–Morley experiment, the dependence of light speed on the orientation of the apparatus and the relation of longitudinal and transverse lengths of bodies in motion is analyzed. Also modern variants of the Kennedy–Thorndike experiment, by which the dependence of light speed on the velocity of the apparatus and the relation of time dilation and length contraction is analyzed, have been conducted. The current precision, by which an anisotropy of the speed of light can be excluded, is at the 10−17 level. This is related to the relative velocity between the solar system and the rest frame of the cosmic microwave background radiation of ∼368 km/s (see also Resonator Michelson–Morley experiments).

In addition, the Standard-Model Extension (SME) can be used to obtain a larger number of isotropy coefficients in the photon sector. It uses the even- and odd-parity coefficients (3x3 matrices) , and .[3] They can be interpreted as follows: represent anisotropic shifts in the two-way (forward and backwards) speed of light, represent anisotropic differences in the one-way speed of counterpropagating beams along an axis,[4][5] and represent isotropic (orientation-independent) shifts in the one-way phase velocity of light.[6] However, it was shown that such variations in the speed of light can be removed by suitable coordinate transformations and field redefinitions, though this doesn't mean that observed Lorentz violations can be completely removed that way, since such a redefinition only transfers those violations from the photon sector to the matter sector of SME.[3] While ordinary symmetric optical resonators are suitable for testing even-parity effects and provide only tiny constraints on odd-parity effects, also asymmetric resonators have been built for the detection of odd-parity effects.[6] For additional coefficients in the photon sector leading to birefringence of light in vacuum, which cannot be redefined as the other photon effects, see #Vacuum birefringence.

Another type of test of the related one-way light speed isotropy in combination with the electron sector of the SME was conducted by Bocquet et al. (2010).[7] They searched for fluctuations in the 3-momentum of photons during Earth's rotation, by measuring the Compton scattering of ultrarelativistic electrons on monochromatic laser photons in the frame of the cosmic microwave background radiation, as originally suggested by Vahe Gurzadyan and Amur Margarian [8] (for details on that 'Compton Edge' method and analysis see,[9] discussion e.g.[10]).

Author Year RMS SME
Orientation Velocity
Michimura et al.[11] 2013
Baynes et al.[12] 2012
Baynes et al.[13] 2011
Hohensee et al.[4] 2010
Bocquet et al.[7] 2010 [14]
Herrmann et al.[15] 2009
Eisele et al.[16] 2009
Tobar et al.[17] 2009
Tobar et al.[18] 2009
Müller et al.[19] 2007
Carone et al.[20] 2006 [21]
Stanwix et al.[22] 2006
Herrmann et al.[23] 2005
Stanwix et al.[24] 2005
Antonini et al.[25] 2005
Wolf et al.[26] 2004
Wolf et al.[27] 2004
Müller et al.[28] 2003
Lipa et al.[29] 2003
Wolf et al.[30] 2003
Braxmaier et al.[31] 2002
Hils and Hall[32] 1990
Brillet and Hall[33] 1979

Solar system

Besides terrestrial tests also astrometric tests using Lunar Laser Ranging (LLR), i.e. sending laser signals from Earth to Moon and back, have been conducted. They are ordinarily used to test general relativity and are evaluated using the Parameterized post-Newtonian formalism.[34] However, since these measurements are based on the assumption that the speed of light is constant, they can also be used as tests of special relativity by analyzing potential distance and orbit oscillations. For instance, Zoltán Lajos Bay and White (1981) demonstrated the empirical foundations of the Lorentz group and thus special relativity by analyzing the planetary radar and LLR data.[35]

In addition to the terrestrial Kennedy–Thorndike experiments mentioned above, Müller & Soffel (1995)[36] and Müller et al. (1999)[37] tested the RMS velocity dependence parameter by searching for anomalous distance oscillations using LLR. Since time dilation is already confirmed to high precision, a positive result would prove that light speed depends on the observer's velocity and length contraction is direction dependent (like in the other Kennedy–Thorndike experiments). However, no anomalous distance oscillations have been observed, with a RMS velocity dependence limit of ,[37] comparable to that of Hils and Hall (1990, see table above on the right).

Vacuum dispersion

Another effect often discussed in connection with Quantum gravity is the possibility of Dispersion of light in vacuum (i.e. the dependence of light speed on photon energy), due to Lorentz violating Dispersion relations. This effect should be strong at energy levels comparable to, or beyond the Planck energy of ~1.22×1019  GeV, while being extraordinarily weak at energies accessible in the laboratory or observed in astrophysical objects. In an attempt to observe a weak dependence of speed on energy, light from distant astrophysical sources has been examined in many experiments. In the following papers, light from gamma ray bursts and from distant galaxies are used to measure such relations. Especially the Fermi-LAT group was able show that no energy dependence and thus no observable Lorentz violation occurs in the photon sector at photon energies up to 31 GeV,[38] which excludes a large class of Lorentz-violating quantum gravity models.

Name Year QG-Bounds in GeV
Fermi-LAT-GBM-Collaboration[38] 2009
H.E.S.S.-Collaboration[39] 2008
MAGIC-Collaboration[40] 2007
Lamon et al.[41] 2008
Martinez et al.[42] 2006
Ellis et al.[43][44] 2006/8
Boggs et al.[45] 2004
Ellis et al.[46] 2003
Ellis et al.[47] 2000
Schaefer[48] 1999
Biller[49] 1999
Kaaret[50] 1999

Vacuum birefringence

Lorentz violating dispersion relations due to the presence of an anisotropic space might also lead to vacuum birefringence and parity violations. For instance, the polarization plane of photons might rotate due to velocity differences between left- and right-handed photons. In particular, gamma ray bursts, galactic radiation, and the cosmic microwave background radiation are examined. The SME coefficients and for Lorentz violation are given, 3 and 5 denote the mass dimensions employed. The latter corresponds to in another EFT by , being the Planck mass.[51] No significant Lorentz violations could be measured up to now.[2]

Name Year SME bounds EFT bound
in GeV in GeV−1
Götz et al.[52] 2013
Toma et al.[53] 2012
Laurent et al.[54] 2011
Stecker[51] 2011
Kostelecký et al.[55] 2009
QUaD[56] 2008
Kostelecký et al.[57] 2008
Maccione et al.[58] 2008
Komatsu et al.[59] 2008
Kahniashvili et al.[60] 2008
Xia et al.[61] 2008
Cabella et al.[62] 2007
Fan et al.[63] 2007
Feng et al.[64] 2006
Gleiser et al.[65] 2001
Carroll et al.[66] 1990

Threshold effects

Lorentz violations could lead to otherwise forbidden effects at threshold energy, for example a difference between the speed of photons and the limiting velocity of any particle having a charge structure (protons, electrons, neutrinos). This is because the dispersion relation is assumed to be modified in Lorentz violating EFT models such as SME. Depending on which of these particles travels faster or slower than the speed of light, effects such as the following can occur:[67][68]

  • Photon decay at superluminal speed. These (hypothetical) high-energy photons would quickly decay into other particles, which means that high energy light cannot propagate over long distances. So the mere existence of high energy light from astronomic sources constrains possible deviations from the limiting velocity.
  • Vacuum Cherenkov radiation at superluminal speed of any particle (protons, electrons, neutrinos) having a charge structure. In this case, emission of Bremsstrahlung can occur, until the particle falls below threshold and subluminal speed is reached again. This is similar to the known Cherenkov radiation in media, in which particles are traveling faster than the phase velocity of light in that medium. Deviations from the limiting velocity can be constrained by observing high energy particles of distant astronomic sources that reach Earth.
  • The rate of synchrotron radiation could be modified, if the limiting velocity between charged particles and photons is different.
  • The Greisen–Zatsepin–Kuzmin limit could be evaded by Lorentz violating effects. However, recent measurements indicate that this limit really exists.

Since astronomic measurements also contain additional assumptions – like the unknown conditions at the emission or along the path traversed by the particles, or the nature of the particles –, terrestrial measurements provide results of greater clarity, even though the bounds are lower (the following bounds describe maximal deviations between the speed of light and the limiting velocity of matter):

Name Year EFT bounds Particle Astr./Terr.
Photon decay Cherenkov Synchrotron GZK
Stecker & Scully[69] 2009 UHECR Astr.
Altschul[70] 2009 Electron Terr.
Hohensee et al.[68] 2009 Electron Terr.
Bi et al.[71] 2008 UHECR Astr.
Klinkhamer & Schreck[72] 2008 UHECR Astr.
Klinkhamer & Risse[73] 2007 UHECR Astr.
Kaufhold et al.[74] 2007 UHECR Astr.
Altschul[75] 2005 Electron Astr.
Gagnon et al.[76] 2004 UHECR Astr.
Jacobson et al.[77] 2003 Electron Astr.
Coleman & Glashow[78] 1997 UHECR Astr.

Time dilation

The classic time dilation experiments such as the Ives–Stilwell experiment, the Moessbauer rotor experiments, and the Time dilation of moving particles, have been enhanced by modernized equipment. For example, the Doppler shift of lithium ions traveling at high speeds is evaluated by using saturated spectroscopy in heavy ion storage rings. For more information, see Modern Ives–Stilwell experiments.

The current precision with which time dilation is measured (using the RMS test theory), is at the ~10−8 level. It was shown, that Ives-Stilwell type experiments are also sensitive to the isotropic light speed coefficient of the SME, as introduced above.[6] Chou et al. (2010) even managed to measure a frequency shift of ~10−16 due to time dilation, namely at every day's speeds such as 36 km/h.[79]

Author Year Velocity Maximum deviation
from time dilation
Fourth order
RMS bounds
Novotny et al.[80] 2009 0,34c
Reinhardt et al.[81] 2007 0,064c
Saathoff et al.[82] 2003 0,064c
Grieser et al.[83] 1994 0,064c

Clock comparison

By this kind of spectroscopy experiments – called Hughes–Drever experiments as well – violations of Lorentz invariance in the interactions of protons and neutrons are investigated, caused by a possible existence of a preferred frame. The energy levels of those nucleons are studied in order to find anisotropies in their frequencies ("clocks"). Clock anisotropy experiments are currently the most sensitive terrestrial ones, because the current precision by which Lorentz violations can be excluded, lies at the 10−33 GeV level. Using spin-polarized torsion balances, also anisotropies with respect to electrons can be examined.

Author Year SME anisotropy in GeV
Proton Neutron
Peck et al.[84] 2012
Smiciklas et al.[85] 2011
Gemmel et al.[86] 2010
Brown et al.[87] 2010
Altarev et al.[88] 2009
Wolf et al.[89] 2006
Canè et al.[90] 2004
Phillips et al.[91] 2000
Bear et al.[92] 2000
Electron
Author Year SME anisotropy
in GeV
Heckel et al.[93] 2008
Heckel et al.[94] 2006
Hou et al.[95] 2003
Humphrey et al.[96] 2003

CPT and antimatter tests

Another fundamental symmetry of nature is CPT symmetry. It was shown that CPT violations lead to Lorentz violations in quantum field theory (even though there are nonlocal exceptions).[97][98] CPT symmetry requires, for instance, the equality of mass, and equality of decay rates between matter and antimatter. For classic tests of decay rates, see Accelerator tests of time dilation and CPT symmetry.

Modern tests by which CPT symmetry has been confirmed are mainly conducted in the neutral meson sector. In large particle accelerators, direct measurements of mass differences between top- and antitop-quarks have been conducted as well.

Neutral B mesons
Author Year
Belle[99] 2012
Kostelecký et al.[100] 2010
BaBar[101] 2008
Belle[102] 2003
Neutral D mesons
FOCUS[103] 2003
Neutral kaons
Author Year
KTeV[104] 2011
KLOE[105] 2006
CPLEAR[106] 2003
KTeV[107] 2003
NA31[108] 1990
Top- and antitop quarks
Author Year
CDF[109] 2012
CMS[110] 2012
D0[111] 2011
CDF[112] 2011
D0[113] 2009

Using SME, also additional consequences of CPT violation in the neutral meson sector can be formulated.[100] Other SME related CPT tests have been performed as well:

  • Using Penning traps in which individual charged particles and their counterparts are trapped, Gabrielse et al. (1999) examined cyclotron frequencies in proton-antiproton measurements, and couldn't find any deviation down to 9·10−11.[114]
  • Hans Dehmelt et al. tested the anomaly frequency, which plays a fundamental role in the measurement of the electron's gyromagnetic ratio. They searched for sidereal variations, and differences between electrons and positrons as well. Eventually they found no deviations, thereby establishing bounds of 10−24 GeV.[115]
  • Hughes et al. (2001) examined muons for sidereal signals in the spectrum of muons, and found no Lorentz violation down to 10−23 GeV.[116]
  • The "Muon g-2" collaboration of the Brookhaven National Laboratory searched for deviations in the anomaly frequency of muons and anti-muons, and for sidereal variations under consideration of Earth's orientation. Also here, no Lorentz violations could be found, with a precision of 10−24 GeV.[117]

Other particles and interactions

Third generation particles have been examined for potential Lorentz violations using SME. For instance, Altschul (2007) placed upper limits on Lorentz violation of the tau of 10−8, by searching for anomalous absorption of high energy astrophysical radiation.[118] During the BaBar experiment (2007) it was searched for sidereal variations during Earth's rotation using B mesons (thus bottom quarks) and their antiparticles. No Lorentz and CPT violating signal was found with an upper limit of .[119] Also top quark pairs have been examined in the D0 experiment (2012). They showed that the cross section production of these pairs doesn't depend on sidereal time during Earth's rotation.[120]

Lorentz violation bounds on Bhabha scattering have been given by Charneski et al. (2012).[121] They showed that differential cross sections for the vector and axial couplings in QED become direction dependent in the presence of Lorentz violation. They found no indication of such an effect, placing upper limits on Lorentz violations of .

Gravitation

The influence of Lorentz violation on gravitational fields and thus general relativity was analyzed as well. The standard framework for such investigations is the Parameterized post-Newtonian formalism (PPN), in which Lorentz violating preferred frame effects are described by the parameters , and (see the PPN article on observational bounds on these parameters). Lorentz violations are also discussed in relation to Alternatives to general relativity such as Loop quantum gravity, Emergent gravity, Einstein aether theory or Hořava–Lifshitz gravity.

Also SME is suitable to analyze Lorentz violations in the gravitational sector. Bailey and Kostelecky (2006) constrained Lorentz violations down to by analyzing the perihelion shifts of Mercury and Earth, and down to in relation to solar spin precession.[122] Battat et al. (2007) examined Lunar Laser Ranging data and found no oscillatory perturbations in the lunar orbit. Their strongest SME bound excluding Lorentz violation was .[123] Iorio (2012) obtained bounds at the level by examining Keplerian orbital elements of a test particle acted upon by Lorentz-violating gravitomagnetic accelerations.[124] Xie (2012) analyzed the advance of periastron of binary pulsars, setting limits on Lorentz violation at the level.[125]

Neutrino tests

Neutrino oscillations

Although neutrino oscillations have been experimentally confirmed, the theoretical foundations are still controversial, as it can be seen in the discussion related to sterile neutrinos. This makes predictions of possible Lorentz violations very complicated. It is generally assumed that neutrino oscillations require a certain finite mass. However, oscillations could also occur as a consequence of Lorentz violations, so there are speculations as to how much those violations contribute to the mass of the neutrinos.[126]

Additionally, a series of investigations have been published in which a sidereal dependence of the occurrence of neutrino oscillations was tested, which could arise when there were a preferred background field. This, possible CPT violations, and other coefficients of Lorentz violations in the framework of SME, have been tested. Here, some of the achieved GeV bounds for the validity of Lorentz invariance are stated:

Name Year SME bounds
in GeV
Double Chooz[127] 2012
MINOS[128] 2012
MiniBooNE[129] 2012
IceCube[130] 2010
MINOS[131] 2010
MINOS[132] 2008
LSND[133] 2005

Neutrino speed

Since the discovery of neutrino oscillations, it is assumed that their speed is slightly below the speed of light. Direct velocity measurements indicated an upper limit for relative speed differences between light and neutrinos of , see measurements of neutrino speed.

Also indirect constraints on neutrino velocity, on the basis of effective field theories such as SME, can be achieved by searching for Vacuum Cherenkov radiation. For example, neutrinos should exhibit Bremsstrahlung in the form of electron-positron pair production.[134] Another possibility in the same framework is the investigation of the decay of pions into muons and neutrinos. Superluminal neutrinos would considerably delay those decay processes. The absence of those effects indicate tight limits for velocity differences between light and neutrinos.[135]

Name Year Energy SME bounds for (v-c)/c
Vacuum Cherenkov Pion decay
Cowsik et al.[136] 2012 100 TeV
Huo et al.[137] 2012 400 TeV
ICARUS[138] 2011 17 GeV
Cowsik et al.[139] 2011 400 TeV
Bi et al.[140] 2011 400 TeV
Cohen/Glashow[141] 2011 100 TeV

Also velocity differences between neutrino flavors could arise. A comparison between muon- and electron-neutrinos by Coleman & Glashow (1998) gave a negative result, with bounds .[78]

Reports of alleged Lorentz violations

LSND, MiniBooNE

In 2001, the LSND experiment observed a 3.8σ excess of antineutrino interactions in neutrino oscillations, which contradicts the standard model.[142] First results of the more recent MiniBooNE experiment appeared to exclude this data above an energy scale of 450 MeV, but they had checked neutrino interactions, not antineutrino ones.[143] In 2008, however, they reported an excess of electron-like neutrino events between 200–475 MeV.[144] And in 2010, when carried out with antineutrinos (as in LSND), the result was in agreement with the LSND result, that is, an excess at the energy scale from 450–1250 MeV was observed.[145][146] Whether those anomalies can be explained by sterile neutrinos, or whether they indicate Lorentz violations, is still discussed and subject to further theoretical and experimental researches.[147]

Solved

In 2011, the OPERA Collaboration published (in a non-peer reviewed arXiv preprint) the results of neutrino measurements, according to which neutrinos are traveling faster than light.[148] The neutrinos apparently arrived early by ~60 ns. The standard deviation was 6σ, clearly beyond the 5σ limit necessary for a significant result. However, in 2012 it was found that this result was due to measurement errors. The end result was consistent with the speed of light,[149] see Faster-than-light neutrino anomaly.

In 2010, MINOS reported differences between the disappearance (and thus the masses) of neutrinos and antineutrinos at the 2.3 sigma level. This would violate CPT symmetry and Lorentz symmetry.[150][151][152] However, in 2011 MINOS updated their antineutrino results, reporting that the difference is not as great as initially expected, after evaluating further data.[153] In 2012, they published a paper in which they reported that the difference is now removed.[154]

In 2007, the MAGIC Collaboration published a paper, in which they claimed a possible energy dependence of the speed of photons from the galaxy Markarian 501. They admitted, that also a possible energy-dependent emission effect could have cause this result as well.[40][155] However, the MAGIC result was superseded by the substantially more precise measurements of the Fermi-LAT group, which couldn't find any effect even beyond the Planck energy.[38] For details, see section Dispersion.

In 1997, Nodland & Ralston claimed to have found a rotation of the polarization plane of light coming from distant radio galaxies. This would indicate an anisotropy of space.[156][157][158] This attracted some interest in the media. However, some criticisms immediately appeared, which disputed the interpretation of the data, and who alluded to errors in the publication.[159][160][161][162][163][164][165] More recent researches also haven't found any evidence for this effect, see section Birefringence.

See also

References

  1. ^ Mattingly, David (2005). "Modern Tests of Lorentz Invariance". Living Rev. Relativity. 8 (5).
  2. ^ a b Kostelecky, V.A.; Russell, N. (2011). "Data tables for Lorentz and CPT violation". Reviews of Modern Physics. 83 (1): 11–31. arXiv:0801.0287. Bibcode:2011RvMP...83...11K. doi:10.1103/RevModPhys.83.11.
  3. ^ a b Kostelecký, V. Alan; Mewes, Matthew (2002). "Signals for Lorentz violation in electrodynamics". Physical Review D. 66 (5): 056005. arXiv:hep-ph/0205211. doi:10.1103/PhysRevD.66.056005.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ a b Hohensee; et al. (2010). "Improved constraints on isotropic shift and anisotropies of the speed of light using rotating cryogenic sapphire oscillators". Physical Review D. 82 (7): 076001. arXiv:1006.1376. doi:10.1103/PhysRevD.82.076001. {{cite journal}}: Explicit use of et al. in: |author= (help)
  5. ^ Hohensee; et al. (2010). "Covariant Quantization of Lorentz-Violating Electromagnetism". arXiv:1210.2683. {{cite journal}}: Cite journal requires |journal= (help); Explicit use of et al. in: |author= (help); Standalone version of work included in the Ph.D. Thesis of M.A. Hohensee.
  6. ^ a b c Tobar; et al. (2005). "New methods of testing Lorentz violation in electrodynamics". Physical Review D. 71 (2): 025004. arXiv:hep-ph/0408006. doi:10.1103/PhysRevD.71.025004. {{cite journal}}: Explicit use of et al. in: |author= (help)
  7. ^ a b Bocquet; et al. (2010). "Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons". Physical Review Letters. 104 (24): 24160. arXiv:1005.5230. Bibcode:2010PhRvL.104x1601B. doi:10.1103/PhysRevLett.104.241601. {{cite journal}}: Explicit use of et al. in: |author= (help)
  8. ^ Gurzadyan, V. G.; Margarian, A. T. (1996). "Inverse Compton testing of fundamental physics and the cosmic background radiation". Physica Scripta. 53: 513. Bibcode:1996PhyS...53..513G. doi:10.1088/0031-8949/53/5/001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Gurzadyan; et al. (2012). "A new limit on the light speed isotropy from the GRAAL experiment at the ESRF". Proc. 12th M.Grossmann Meeting on General Relativity. B: 1495. arXiv:1004.2867. Bibcode:2010arXiv1004.2867G. {{cite journal}}: Explicit use of et al. in: |author= (help)
  10. ^ Zhou, Lingli, Ma, Bo-Qiang (2012). "A theoretical diagnosis on light speed anisotropy from GRAAL experiment". Astroparticle Physics. 36 (1): 37–41. arXiv:1009.1675. doi:10.1016/j.astropartphys.2012.04.015.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Michimura; et al. (2013). "New Limit on Lorentz Violation Using a Double-Pass Optical Ring Cavity". Physical Review Letters. 110 (20): 200401. arXiv:1303.6709. doi:10.1103/PhysRevLett.110.200401. {{cite journal}}: Explicit use of et al. in: |author= (help)
  12. ^ Baynes; et al. (2012). "Oscillating Test of the Isotropic Shift of the Speed of Light". Physical Review Letters. 108 (26): 260801. doi:10.1103/PhysRevLett.108.260801. {{cite journal}}: Explicit use of et al. in: |author= (help)
  13. ^ Baynes; et al. (2011). "Testing Lorentz invariance using an odd-parity asymmetric optical resonator". Physical Review D. 84 (8): 081101. arXiv:1108.5414. doi:10.1103/PhysRevD.84.081101. {{cite journal}}: Explicit use of et al. in: |author= (help)
  14. ^ combined with electron coefficents
  15. ^ Herrmann; et al. (2009). "Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level". Physical Review D. 80 (100): 105011. arXiv:1002.1284. Bibcode:2009PhRvD..80j5011H. doi:10.1103/PhysRevD.80.105011. {{cite journal}}: Explicit use of et al. in: |author= (help)
  16. ^ Eisele; et al. (2009). "Laboratory Test of the Isotropy of Light Propagation at the 10-17 level" (PDF). Physical Review Letters. 103 (9): 090401. Bibcode:2009PhRvL.103i0401E. doi:10.1103/PhysRevLett.103.090401. PMID 19792767. {{cite journal}}: Explicit use of et al. in: |author= (help)
  17. ^ Tobar; et al. (2009). "Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser". Physical Review D. 81 (2): 022003. arXiv:0912.2803. Bibcode:2010PhRvD..81b2003T. doi:10.1103/PhysRevD.81.022003. {{cite journal}}: Explicit use of et al. in: |author= (help)
  18. ^ Tobar; et al. (2009). "Rotating odd-parity Lorentz invariance test in elecrodynamics". Physical Review D. 80 (12): 125024. arXiv:0909.2076. doi:10.1103/PhysRevD.80.125024. {{cite journal}}: Explicit use of et al. in: |author= (help)
  19. ^ Müller; et al. (2007). "Relativity tests by complementary rotating Michelson-Morley experiments". Phys. Rev. Lett. 99 (5): 050401. arXiv:0706.2031. Bibcode:2007PhRvL..99e0401M. doi:10.1103/PhysRevLett.99.050401. PMID 17930733. {{cite journal}}: Explicit use of et al. in: |author= (help)
  20. ^ Carone; et al. (2006). "New bounds on isotropic Lorentz violation". Physical Review D. 74 (7): 077901. arXiv:hep-ph/0609150. doi:10.1103/PhysRevD.74.077901. {{cite journal}}: Explicit use of et al. in: |author= (help)
  21. ^ Measured by examining the anomalous magnetic moment of the electron.
  22. ^ Stanwix; et al. (2006). "Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators". Physical Review D. 74 (8): 081101. arXiv:gr-qc/0609072. Bibcode:2006PhRvD..74h1101S. doi:10.1103/PhysRevD.74.081101. {{cite journal}}: Explicit use of et al. in: |author= (help)
  23. ^ Herrmann; et al. (2005). "Test of the Isotropy of the Speed of Light Using a Continuously Rotating Optical Resonator". Phys. Rev. Lett. 95 (15): 150401. arXiv:physics/0508097. Bibcode:2005PhRvL..95o0401H. doi:10.1103/PhysRevLett.95.150401. PMID 16241700. {{cite journal}}: Explicit use of et al. in: |author= (help)
  24. ^ Stanwix; et al. (2005). "Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators". Physical Review Letters. 95 (4): 040404. arXiv:hep-ph/0506074. Bibcode:2005PhRvL..95d0404S. doi:10.1103/PhysRevLett.95.040404. PMID 16090785. {{cite journal}}: Explicit use of et al. in: |author= (help)
  25. ^ Antonini; et al. (2005). "Test of constancy of speed of light with rotating cryogenic optical resonators". Physical Review A. 71 (5): 050101. arXiv:gr-qc/0504109. Bibcode:2005PhRvA..71e0101A. doi:10.1103/PhysRevA.71.050101. {{cite journal}}: Explicit use of et al. in: |author= (help)
  26. ^ Wolf; et al. (2004). "Improved test of Lorentz invariance in electrodynamics". Physical Review D. 70 (5): 051902. arXiv:hep-ph/0407232. Bibcode:2004PhRvD..70e1902W. doi:10.1103/PhysRevD.70.051902. {{cite journal}}: Explicit use of et al. in: |author= (help)
  27. ^ Wolf; et al. (2004). "Whispering Gallery Resonators and Tests of Lorentz Invariance". General Relativity and Gravitation. 36 (10): 2351–2372. arXiv:gr-qc/0401017. Bibcode:2004GReGr..36.2351W. doi:10.1023/B:GERG.0000046188.87741.51. {{cite journal}}: Explicit use of et al. in: |author= (help)
  28. ^ Müller; et al. (2003). "Modern Michelson-Morley experiment using cryogenic optical resonators". Physical Review Letters. 91 (2): 020401. arXiv:physics/0305117. Bibcode:2003PhRvL..91b0401M. doi:10.1103/PhysRevLett.91.020401. PMID 12906465. {{cite journal}}: Explicit use of et al. in: |author= (help)
  29. ^ Lipa; et al. (2003). "New Limit on Signals of Lorentz Violation in Electrodynamics". Physical Review Letters. 90 (6): 060403. arXiv:physics/0302093. doi:10.1103/PhysRevLett.90.060403. {{cite journal}}: Explicit use of et al. in: |author= (help)
  30. ^ Wolf; et al. (2003). "Tests of Lorentz Invariance using a Microwave Resonator". Physical Review Letters. 90 (6): 060402. arXiv:gr-qc/0210049. Bibcode:2003PhRvL..90f0402W. doi:10.1103/PhysRevLett.90.060402. PMID 12633279. {{cite journal}}: Explicit use of et al. in: |author= (help)
  31. ^ Braxmaier; et al. (2002). "Tests of Relativity Using a Cryogenic Optical Resonator" (PDF). Phys. Rev. Lett. 88 (1): 010401. Bibcode:2002PhRvL..88a0401B. doi:10.1103/PhysRevLett.88.010401. PMID 11800924. {{cite journal}}: Explicit use of et al. in: |author= (help)
  32. ^ Hils, Dieter; Hall, J. L. (1990). "Improved Kennedy-Thorndike experiment to test special relativity". Phys. Rev. Lett. 64 (15): 1697–1700. Bibcode:1990PhRvL..64.1697H. doi:10.1103/PhysRevLett.64.1697. PMID 10041466.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Brillet, A.; Hall, J. L. (1979). "Improved laser test of the isotropy of space". Phys. Rev. Lett. 42 (9): 549–552. Bibcode:1979PhRvL..42..549B. doi:10.1103/PhysRevLett.42.549.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2009). "Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon". International Journal of Modern Physics D. 18 (7): 1129–1175. arXiv:gr-qc/0507083. Bibcode:2009IJMPD..18.1129W. doi:10.1142/S021827180901500X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Bay, Z.; White, J. A. (1981). "Radar astronomy and the special theory of relativity". Acta physica Academiae Scientiarum Hungaricae. 51 (3): 273–297. Bibcode:1981AcPhy..51..273B. doi:10.1007/BF03155586.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Müller, J.; Soffel, M. H. (1995). "A Kennedy-Thorndike experiment using LLR data". Physics Letters A. 198 (2): 71–73. Bibcode:1995PhLA..198...71M. doi:10.1016/0375-9601(94)01001-B.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ a b Müller, J., Nordtvedt, K., Schneider, M., Vokrouhlicky, D.: (1999). "Improved Determination of Relativistic Quantities from LLR" (PDF). Proceedings of the 11th International Workshop on Laser Ranging Instrumentation. 10: 216–222.{{cite journal}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  38. ^ a b c Fermi LAT Collaboration (2009). "A limit on the variation of the speed of light arising from quantum gravity effects". Nature. 462 (7271): 331–334. arXiv:0908.1832. doi:10.1038/nature08574. PMID 19865083.
  39. ^ HESS Collaboration (2008). "Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304". Physics Letters B. 101 (17): 170402. arXiv:0810.3475. Bibcode:2008PhRvL.101q0402A. doi:10.1103/PhysRevLett.101.170402.
  40. ^ a b MAGIC Collaboration (2008). "Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope". Physics Letters B. 668 (4): 253–257. arXiv:0708.2889. Bibcode:2008PhLB..668..253M. doi:10.1016/j.physletb.2008.08.053.
  41. ^ Lamon; et al. (2008). "Study of Lorentz violation in INTEGRAL gamma-ray bursts". General Relativity and Gravitation. 40 (8): 1731–1743. arXiv:0706.4039. doi:10.1007/s10714-007-0580-6. {{cite journal}}: Explicit use of et al. in: |author= (help)
  42. ^ Rodríguez Martínez; et al. (2006). "GRB 051221A and tests of Lorentz symmetry". Journal of Cosmology and Astroparticle Physics (5): 017. arXiv:astro-ph/0601556. doi:10.1088/1475-7516/2006/05/017. {{cite journal}}: Explicit use of et al. in: |author= (help)
  43. ^ Ellis; et al. (2006). "Robust limits on Lorentz violation from gamma-ray bursts". Astroparticle Physics. 25 (6): 402–411. arXiv:astro-ph/0510172. doi:10.1016/j.astropartphys.2006.04.001. {{cite journal}}: Explicit use of et al. in: |author= (help)
  44. ^ Ellis; et al. (2008). "Corrigendum to "Robust limits on Lorentz violation from gamma-ray bursts"". Astroparticle Physics. 29 (2): 158–159. arXiv:0712.2781. doi:10.1016/j.astropartphys.2007.12.003. {{cite journal}}: Explicit use of et al. in: |author= (help)
  45. ^ Boggs; et al. (2004). "Testing Lorentz Invariance with GRB021206". The Astrophysical Journal. 611 (2): L77–L80. arXiv:astro-ph/0310307. Bibcode:2004ApJ...611L..77B. doi:10.1086/423933. {{cite journal}}: Explicit use of et al. in: |author= (help)
  46. ^ Ellis; et al. (2003). "Quantum-gravity analysis of gamma-ray bursts using wavelets". Astronomy and Astrophysics. 402: 409–424. arXiv:astro-ph/0210124. Bibcode:2003A&A...402..409E. doi:10.1051/0004-6361:20030263. {{cite journal}}: Explicit use of et al. in: |author= (help)
  47. ^ Ellis; et al. (2000). "A Search in Gamma-Ray Burst Data for Nonconstancy of the Velocity of Light". The Astrophysical Journal. 535 (1): 139–151. arXiv:astro-ph/9907340. Bibcode:2000ApJ...535..139E. doi:10.1086/308825. {{cite journal}}: Explicit use of et al. in: |author= (help)
  48. ^ Schaefer, Bradley E. (1999). "Severe Limits on Variations of the Speed of Light with Frequency". Physical Review Letters. 82 (25): 4964–4966. arXiv:astro-ph/9810479. Bibcode:1999PhRvL..82.4964S. doi:10.1103/PhysRevLett.82.4964.
  49. ^ Biller; et al. (1999). "Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies". Physical Review Letters. 83 (11): 2108–2111. arXiv:gr-qc/9810044. Bibcode:1999PhRvL..83.2108B. doi:10.1103/PhysRevLett.83.2108. {{cite journal}}: Explicit use of et al. in: |author= (help)
  50. ^ Kaaret, Philip (1999). "Pulsar radiation and quantum gravity". Astronomy and Astrophysics. 345: L32–L34. arXiv:astro-ph/9903464.
  51. ^ a b Stecker, Floyd W. (2011). "A new limit on Planck scale Lorentz violation from γ-ray burst polarization". Astroparticle Physics. 35 (2): 95–97. arXiv:1102.2784. doi:10.1016/j.astropartphys.2011.06.007.
  52. ^ Götz; et al. (2013). "The polarized gamma-ray burst GRB 061122". Monthly Notices of the Royal Astronomical Society. 431 (4): 3550–3556. arXiv:1303.4186. doi:10.1093/mnras/stt439. {{cite journal}}: Explicit use of et al. in: |author= (help)
  53. ^ Toma; et al. (2012). "Strict Limit on CPT Violation from Polarization of γ-Ray Bursts". Physical Review Letters. 109 (24): 241104. arXiv:1208.5288. doi:10.1103/PhysRevLett.109.241104. {{cite journal}}: Explicit use of et al. in: |author= (help)
  54. ^ Laurent; et al. (2011). "Constraints on Lorentz Invariance Violation using integral/IBIS observations of GRB041219A". Physical Review D. 83 (12): 121301. arXiv:1106.1068. doi:10.1103/PhysRevD.83.121301. {{cite journal}}: Explicit use of et al. in: |author= (help)
  55. ^ Kostelecký, V. Alan; Mewes, Matthew (2009). "Electrodynamics with Lorentz-violating operators of arbitrary dimension". Physical Review D. 80 (1): 015020. arXiv:0905.0031. Bibcode:2009PhRvD..80a5020K. doi:10.1103/PhysRevD.80.015020.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. ^ QUaD Collaboration (2008). "Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter". Physical Review Letters. 102 (16): 161302. arXiv:0811.0618. Bibcode:2009PhRvL.102p1302W. doi:10.1103/PhysRevLett.102.161302.
  57. ^ Kostelecký, V. Alan; Mewes, Matthew (2008). "Astrophysical Tests of Lorentz and CPT Violation with Photons". The Astrophysical Journal. 689 (1): L1–L4. arXiv:0809.2846. Bibcode:2008ApJ...689L...1K. doi:10.1086/595815.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. ^ Maccione; et al. (2008). "γ-ray polarization constraints on Planck scale violations of special relativity". Physical Review D. 78 (10): 103003. arXiv:0809.0220. doi:10.1103/PhysRevD.78.103003. {{cite journal}}: Explicit use of et al. in: |author= (help)
  59. ^ Komatsu; et al. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation". The Astrophysical Journal Supplement. 180 (2): 330–376. arXiv:0803.0547. Bibcode:2009ApJS..180..330K. doi:10.1088/0067-0049/180/2/330. {{cite journal}}: Explicit use of et al. in: |author= (help)
  60. ^ Kahniashvili; et al. (2008). "Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data". Physical Review D. 78 (12): 123009. arXiv:0807.2593. doi:10.1103/PhysRevD.78.123009. {{cite journal}}: Explicit use of et al. in: |author= (help)
  61. ^ Xia; et al. (2008). "Testing CPT Symmetry with CMB Measurements: Update after WMAP5". The Astrophysical Journal. 679 (2): L61–L63. arXiv:0803.2350. Bibcode:2008ApJ...679L..61X. doi:10.1086/589447. {{cite journal}}: Explicit use of et al. in: |author= (help)
  62. ^ Cabella; et al. (2007). "Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis". Physical Review D. 76 (12): 123014. arXiv:0705.0810. doi:10.1103/PhysRevD.76.123014. {{cite journal}}: Explicit use of et al. in: |author= (help)
  63. ^ Fan; et al. (2007). "γ-ray burst ultraviolet/optical afterglow polarimetry as a probe of quantum gravity". Monthly Notices of the Royal Astronomical Society. 376 (4): 1857–1860. arXiv:astro-ph/0702006. Bibcode:2007MNRAS.376.1857F. doi:10.1111/j.1365-2966.2007.11576.x. {{cite journal}}: Explicit use of et al. in: |author= (help)
  64. ^ Feng; et al. (2006). "Searching for CPT Violation with Cosmic Microwave Background Data from WMAP and BOOMERANG". Physical Review Letters. 96 (22): 221302. arXiv:astro-ph/0601095. Bibcode:2006PhRvL..96v1302F. doi:10.1103/PhysRevLett.96.221302. {{cite journal}}: Explicit use of et al. in: |author= (help)
  65. ^ Gleiser, Reinaldo J.; Kozameh, Carlos N. (2001). "Astrophysical limits on quantum gravity motivated birefringence". Physical Review D. 64 (8): 083007. arXiv:gr-qc/0102093. doi:10.1103/PhysRevD.64.083007.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. ^ Carroll; et al. (1990). "Limits on a Lorentz- and parity-violating modification of electrodynamics". Physical Review D. 41 (4): 1231–1240. doi:10.1103/PhysRevD.41.1231. {{cite journal}}: Explicit use of et al. in: |author= (help)
  67. ^ Jacobson; et al. (2002). "Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics". Physical Review D. 67 (12): 124011. arXiv:hep-ph/0209264. doi:10.1103/PhysRevD.67.124011. {{cite journal}}: Explicit use of et al. in: |author= (help)
  68. ^ a b Hohensee; et al. (2009). "Particle-Accelerator Constraints on Isotropic Modifications of the Speed of Light". Physical Review Letters. 102 (17): 170402. arXiv:0904.2031. Bibcode:2009PhRvL.102q0402H. doi:10.1103/PhysRevLett.102.170402. {{cite journal}}: Explicit use of et al. in: |author= (help)
  69. ^ Stecker, Floyd W.; Scully, Sean T. (2008). "Searching for new physics with ultrahigh energy cosmic rays". New Journal of Physics. 11 (8): 085003. arXiv:0906.1735. doi:10.1088/1367-2630/11/8/085003.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  70. ^ Altschul, Brett (2009). "Bounding isotropic Lorentz violation using synchrotron losses at LEP". Physical Review D. 80 (9): 091901. arXiv:0905.4346. doi:10.1103/PhysRevD.80.091901.
  71. ^ Bi, Xiao-Jun; Cao, Zhen; Li, Ye; Yuan, Qiang (2008). "Testing Lorentz invariance with the ultrahigh energy cosmic ray spectrum". Physical Review D. 79 (8): 083015. arXiv:0812.0121. doi:10.1103/PhysRevD.79.083015.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  72. ^ Klinkhamer, F. R.; Schreck, M. (2008). "New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory". Physical Review D. 78 (8): 085026. arXiv:0809.3217. doi:10.1103/PhysRevD.78.085026.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. ^ Klinkhamer, F. R.; Risse, M. (2007). "Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory". Physical Review D. 77 (1): 016002. arXiv:0709.2502. doi:10.1103/PhysRevD.77.016002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  74. ^ Kaufhold, C.; Klinkhamer, F. R. (2007). "Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory". Physical Review D. 76 (2): 025024. arXiv:0704.3255. doi:10.1103/PhysRevD.76.025024.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. ^ Altschul, Brett (2005). "Lorentz violation and synchrotron radiation". Physical Review D. 72 (8): 085003. arXiv:hep-th/0507258. doi:10.1103/PhysRevD.72.085003.
  76. ^ Gagnon, Olivier; Moore, Guy D. (2004). "Limits on Lorentz violation from the highest energy cosmic rays". Physical Review D. 70 (6): 065002. arXiv:hep-ph/0404196. doi:10.1103/PhysRevD.70.065002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. ^ Jacobson; et al. (2003). "New Limits on Planck Scale Lorentz Violation in QED". Physical Review Letters. 93 (2): 021101. arXiv:astro-ph/0309681. Bibcode:2004PhRvL..93b1101J. doi:10.1103/PhysRevLett.93.021101. {{cite journal}}: Explicit use of et al. in: |author= (help)
  78. ^ a b Coleman, Sidney; Glashow, Sheldon L. (1998). "High-energy tests of Lorentz invariance". Physical Review D. 59 (11): 116008. arXiv:hep-ph/9812418. doi:10.1103/PhysRevD.59.116008.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  79. ^ Chou; et al. (2010). "Optical Clocks and Relativity". Science. 329 (5999): 1630–1633. Bibcode:2010Sci...329.1630C. doi:10.1126/science.1192720. PMID 20929843. {{cite journal}}: Explicit use of et al. in: |author= (help)
  80. ^ Novotny, C.; et al. (2009). "Sub-Doppler laser spectroscopy on relativistic beams and tests of Lorentz invariance". Physical Review A. 80 (2): 022107. doi:10.1103/PhysRevA.80.022107. {{cite journal}}: Explicit use of et al. in: |author= (help)
  81. ^ Reinhardt; et al. (2007). "Test of relativistic time dilation with fast optical atomic clocks at different velocities". Nature Physics. 3 (12): 861–864. Bibcode:2007NatPh...3..861R. doi:10.1038/nphys778. {{cite journal}}: Explicit use of et al. in: |author= (help)
  82. ^ Saathoff; et al. (2003). "Improved Test of Time Dilation in Special Relativity". Phys. Rev. Lett. 91 (19): 190403. Bibcode:2003PhRvL..91s0403S. doi:10.1103/PhysRevLett.91.190403. {{cite journal}}: Explicit use of et al. in: |author= (help)
  83. ^ Grieser; et al. (1994). "A test of special relativity with stored lithium ions". Applied Physics B Lasers and Optics. 59 (2): 127–133. doi:10.1007/BF01081163. {{cite journal}}: Explicit use of et al. in: |author= (help)
  84. ^ Peck; et al. (2012). "New Limits on Local Lorentz Invariance in Mercury and Cesium". Physical Review A. 86 (1): 012109. arXiv:1205.5022. doi:10.1103/PhysRevA.86.012109. {{cite journal}}: Explicit use of et al. in: |author= (help)
  85. ^ M. Smiciklas; et al. (2011). "New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer". Physical Review Letters. 107 (17): 171604. arXiv:1106.0738. Bibcode:2011PhRvL.107q1604S. doi:10.1103/PhysRevLett.107.171604. {{cite journal}}: Explicit use of et al. in: |author= (help)
  86. ^ Gemmel; et al. (2010). "Limit on Lorentz and CPT violation of the bound neutron using a free precession He3/Xe129 comagnetometer". Physical Review D. 82 (11): 111901. arXiv:1011.2143. Bibcode:2010PhRvD..82k1901G. doi:10.1103/PhysRevD.82.111901. {{cite journal}}: Explicit use of et al. in: |author= (help)
  87. ^ Brown; et al. (2010). "New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions". Physical Review Letters. 105 (15): 151604. arXiv:1006.5425. Bibcode:2010PhRvL.105o1604B. doi:10.1103/PhysRevLett.105.151604. {{cite journal}}: Explicit use of et al. in: |author= (help)
  88. ^ Altarev, I.; et al. (2009). "Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons". Physical Review Letters. 103 (8): 081602. arXiv:0905.3221. Bibcode:2009PhRvL.103h1602A. doi:10.1103/PhysRevLett.103.081602. {{cite journal}}: Explicit use of et al. in: |author= (help)
  89. ^ Wolf; et al. (2006). "Cold Atom Clock Test of Lorentz Invariance in the Matter Sector". Physical Review Letters. 96 (6): 060801. arXiv:hep-ph/0601024. Bibcode:2006PhRvL..96f0801W. doi:10.1103/PhysRevLett.96.060801. {{cite journal}}: Explicit use of et al. in: |author= (help)
  90. ^ Canè; et al. (2004). "Bound on Lorentz and CPT Violating Boost Effects for the Neutron". Physical Review Letters. 93 (23): 230801. arXiv:physics/0309070. Bibcode:2004PhRvL..93w0801C. doi:10.1103/PhysRevLett.93.230801. {{cite journal}}: Explicit use of et al. in: |author= (help)
  91. ^ Phillips; et al. (2000). "Limit on Lorentz and CPT violation of the proton using a hydrogen maser". Physical Review D. 63 (11): 111101. arXiv:physics/0008230. Bibcode:2001PhRvD..63k1101P. doi:10.1103/PhysRevD.63.111101. {{cite journal}}: Explicit use of et al. in: |author= (help)
  92. ^ Bear; et al. (2000). "Limit on Lorentz and CPT Violation of the Neutron Using a Two-Species Noble-Gas Maser". Physical Review Letters. 85 (24): 5038–5041. arXiv:physics/0007049. Bibcode:2000PhRvL..85.5038B. doi:10.1103/PhysRevLett.85.5038. {{cite journal}}: Explicit use of et al. in: |author= (help)
  93. ^ Heckel; et al. (2008). "Preferred-frame and CP-violation tests with polarized electrons". Physical Review D. 78 (9): 092006. arXiv:0808.2673. Bibcode:2008PhRvD..78i2006H. doi:10.1103/PhysRevD.78.092006. {{cite journal}}: Explicit use of et al. in: |author= (help)
  94. ^ Heckel; et al. (2006). "New CP-Violation and Preferred-Frame Tests with Polarized Electrons". Physical Review Letters. 97 (2): 021603. arXiv:hep-ph/0606218. Bibcode:2006PhRvL..97b1603H. doi:10.1103/PhysRevLett.97.021603. {{cite journal}}: Explicit use of et al. in: |author= (help)
  95. ^ Hou; et al. (2003). "Test of Cosmic Spatial Isotropy for Polarized Electrons Using a Rotatable Torsion Balance". Physical Review Letters. 90 (20): 201101. arXiv:physics/0009012. Bibcode:2003PhRvL..90t1101H. doi:10.1103/PhysRevLett.90.201101. {{cite journal}}: Explicit use of et al. in: |author= (help)
  96. ^ Humphrey; et al. (2003). "Testing CPT and Lorentz symmetry with hydrogen masers". Physical Review A. 68 (6): 063807. arXiv:physics/0103068. Bibcode:2003PhRvA..68f3807H. doi:10.1103/PhysRevA.68.063807. {{cite journal}}: Explicit use of et al. in: |author= (help)
  97. ^ Greenberg, O. W. (2002). "CPT Violation Implies Violation of Lorentz Invariance". Physical Review Letters. 89 (23): 231602. arXiv:hep-ph/0201258. doi:10.1103/PhysRevLett.89.231602.
  98. ^ Greenberg, O. W. "Remarks on a challenge to the relation between CPT and Lorentz violation". arXiv:1105.0927. {{cite journal}}: Cite journal requires |journal= (help)
  99. ^ Belle Collaboration (2012). "Search for time-dependent CPT violation in hadronic and semileptonic B decays". Physical Review D. 85 (7): 071105. arXiv:1203.0930. doi:10.1103/PhysRevD.85.071105.
  100. ^ a b Kostelecký, V. Alan; van Kooten, Richard J. (2010). "CPT violation and B-meson oscillations". Physical Review D. 82 (10): 101702. arXiv:1007.5312. doi:10.1103/PhysRevD.82.101702.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  101. ^ BaBar Collaboration (2008). "Search for CPT and Lorentz Violation in B0-Bmacr0 Oscillations with Dilepton Events". Physical Review Letters. 100 (3): 131802. arXiv:0711.2713. doi:10.1103/PhysRevLett.100.131802.
  102. ^ Belle Collaboration (2003). "Studies of B0-B0 mixing properties with inclusive dilepton events". Physical Review D. 67 (5): 052004. arXiv:hep-ex/0212033. doi:10.1103/PhysRevD.67.052004.
  103. ^ FOCUS Collaboration (2003). "Charm system tests of CPT and Lorentz invariance with FOCUS". Physics Letters B. 556 (1–2): 7–13. arXiv:hep-ex/0208034. doi:10.1016/S0370-2693(03)00103-5.
  104. ^ KTeV Collaboration (2011). "Precise measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system". Physical Review D. 83 (9): 092001. arXiv:1011.0127. doi:10.1103/PhysRevD.83.092001.
  105. ^ KLOE Collaboration (2006). "First observation of quantum interference in the process ϕ→KK→ππππ: A test of quantum mechanics and CPT symmetry". Physics Letters B. 642 (4): 315–321. arXiv:hep-ex/0607027. doi:10.1016/j.physletb.2006.09.046.
  106. ^ CPLEAR Collaboration (2003). "Physics at CPLEAR". Physics Reports. 374 (3): 165–270. doi:10.1016/S0370-1573(02)00367-8.
  107. ^ KTeV Collaboration (2003). "Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system". Physical Review D. 67 (1): 012005. arXiv:hep-ex/0208007. doi:10.1103/PhysRevD.67.012005.
  108. ^ NA31 Collaboration (1990). "A measurement of the phases of the CP-violating amplitudes in K0-->2π decays and a test of CPT invariance". Physics Letters B. 237 (2): 303–312. doi:10.1016/0370-2693(90)91448-K.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  109. ^ CDF Collaboration (2012). "Measurement of the Mass Difference Between Top and Anti-top Quarks". Physical Review D. 87 (5): 052013. arXiv:1210.6131. doi:10.1103/PhysRevD.87.052013.
  110. ^ CMS Collaboration (2012). "Measurement of the Mass Difference between Top and Antitop Quarks". Journal of High Energy Physics: 109. arXiv:1204.2807. doi:10.1007/JHEP06(2012)109.
  111. ^ D0 Collaboration (2011). "Direct Measurement of the Mass Difference between Top and Antitop Quarks". Physical Review D. 84 (5): 052005. arXiv:1106.2063. doi:10.1103/PhysRevD.84.052005.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  112. ^ CDF Collaboration (2011). "Measurement of the Mass Difference between t and t¯ Quarks". Physical Review Letters. 106 (15): 152001. arXiv:1103.2782. doi:10.1103/PhysRevLett.106.152001.
  113. ^ D0 Collaboration (2009). "Direct Measurement of the Mass Difference between Top and Antitop Quarks". Physical Review Letters. 103 (13): 132001. arXiv:0906.1172. doi:10.1103/PhysRevLett.103.132001.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  114. ^ Gabrielse; et al. (1999). "Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles". Physical Review Letters. 82 (16): 3198–3201. Bibcode:1999PhRvL..82.3198G. doi:10.1103/PhysRevLett.82.3198. {{cite journal}}: Explicit use of et al. in: |author= (help)
  115. ^ Dehmelt; et al. (1999). "Past Electron-Positron g-2 Experiments Yielded Sharpest Bound on CPT Violation for Point Particles". Physical Review Letters. 83 (23): 4694–4696. arXiv:hep-ph/9906262. Bibcode:1999PhRvL..83.4694D. doi:10.1103/PhysRevLett.83.4694. {{cite journal}}: Explicit use of et al. in: |author= (help)
  116. ^ Hughes; et al. (2001). "Test of CPT and Lorentz Invariance from Muonium Spectroscopy". Physical Review Letters. 87 (11): 111804. arXiv:hep-ex/0106103. Bibcode:2001PhRvL..87k1804H. doi:10.1103/PhysRevLett.87.111804. {{cite journal}}: Explicit use of et al. in: |author= (help)
  117. ^ Bennett; et al. (2008). "Search for Lorentz and CPT Violation Effects in Muon Spin Precession". Physical Review Letters. 100 (9): 091602. arXiv:0709.4670. Bibcode:2008PhRvL.100i1602B. doi:10.1103/PhysRevLett.100.091602. {{cite journal}}: Explicit use of et al. in: |author= (help)
  118. ^ Altschul, Brett (2007). "Astrophysical limits on Lorentz violation for all charged species". Astroparticle Physics. 28 (3): 380–384. arXiv:hep-ph/0610324. doi:10.1016/j.astropartphys.2007.08.003.
  119. ^ BABAR Collaboration (2007). "Search for CPT and Lorentz Violation in B0-B0 Oscillations with Dilepton Events". Physical Review Letters. 100 (13): 131802. arXiv:0711.2713. doi:10.1103/PhysRevLett.100.131802.
  120. ^ D0 Collaboration (2012). "Search for violation of Lorentz invariance in top quark pair production and decay". Physical Review Letters. 108 (26): 261603. arXiv:1203.6106. doi:10.1103/PhysRevLett.108.261603.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  121. ^ Charneski; et al. (2012). "Lorentz violation bounds on Bhabha scattering". Physical Review D. 86 (4): 045003. arXiv:1204.0755. doi:10.1103/PhysRevD.86.045003. {{cite journal}}: Explicit use of et al. in: |author= (help)
  122. ^ Bailey, Quentin G.; Kostelecký, V. Alan (2006). "Signals for Lorentz violation in post-Newtonian gravity". Physical Review D. 74 (4): 045001. arXiv:gr-qc/0603030. doi:10.1103/PhysRevD.74.045001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  123. ^ Battat, James B. R.; Chandler, John F.; Stubbs, Christopher W. (2007). "Testing for Lorentz Violation: Constraints on Standard-Model-Extension Parameters via Lunar Laser Ranging". Physical Review Letters. 99 (24): 241103. arXiv:0710.0702. Bibcode:2007PhRvL..99x1103B. doi:10.1103/PhysRevLett.99.241103.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  124. ^ Iorio, L. (2012). "Orbital effects of Lorentz-violating standard model extension gravitomagnetism around a static body: a sensitivity analysis". Classical and Quantum Gravity. 29 (17): 175007. arXiv:1203.1859. doi:10.1088/0264-9381/29/17/175007.
  125. ^ Xie, Yi (2012). "Testing Lorentz violation with binary pulsars: constraints on standard model extension". Research in Astronomy and Astrophysics. 13 (1): 1–4. arXiv:1208.0736. doi:10.1088/1674-4527/13/1/001.
  126. ^ Díaz, Jorge S.; Kostelecký, V. Alan (2012). "Lorentz- and CPT-violating models for neutrino oscillations". Physical Review D. 85 (1): 016013. arXiv:1108.1799. doi:10.1103/PhysRevD.85.016013.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  127. ^ Double Chooz collaboration (2012). "First test of Lorentz violation with a reactor-based antineutrino experiment". Physical Review D. 86 (11): 112009. arXiv:1209.5810. doi:10.1103/PhysRevD.86.112009.
  128. ^ MINOS collaboration (2012). "Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector". Physical Review D. 85 (3): 031101. arXiv:1201.2631. doi:10.1103/PhysRevD.85.031101.
  129. ^ MiniBooNE Collaboration (2012). "Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses". Physics Letters B. 718 (4): 1303–1308. arXiv:1109.3480. doi:10.1016/j.physletb.2012.12.020.
  130. ^ IceCube Collaboration (2010). "Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube". Physical Review D. 82 (11): 112003. arXiv:1010.4096. doi:10.1103/PhysRevD.82.112003.
  131. ^ MINOS collaboration (2010). "Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector". Physical Review Letters. 105 (15): 151601. arXiv:1007.2791. Bibcode:2010PhRvL.105o1601A. doi:10.1103/PhysRevLett.105.151601.
  132. ^ MINOS collaboration (2008). "Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector". Physical Review Letters. 101 (15): 151601. arXiv:0806.4945. Bibcode:2008PhRvL.101o1601A. doi:10.1103/PhysRevLett.101.151601.
  133. ^ LSND collaboration (2005). "Tests of Lorentz violation in ν¯μ→ν¯e oscillations". Physical Review D. 72 (7): 076004. arXiv:hep-ex/0506067. doi:10.1103/PhysRevD.72.076004.
  134. ^ Mattingly; et al. (2010). "Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation". Journal of Cosmology and Astroparticle Physics (02): 007. arXiv:0911.0521. doi:10.1088/1475-7516/2010/02/007. {{cite journal}}: Explicit use of et al. in: |author= (help)
  135. ^ Kostelecky, Alan; Mewes, Matthew (May 25, 2012). "Neutrinos with Lorentz-violating operators of arbitrary dimension". Physical Review D. 85 (9). 096005. arXiv:1112.6395. doi:10.1103/PhysRevD.85.096005.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  136. ^ Cowsik; et al. (2012). "Testing violations of Lorentz invariance with cosmic rays". Physical Review D. 86 (4): 045024. arXiv:1206.0713. doi:10.1103/PhysRevD.86.045024. {{cite journal}}: Explicit use of et al. in: |author= (help)
  137. ^ Huo, Yunjie; Li, Tianjun; Liao, Yi; Nanopoulos, Dimitri V.; Qi, Yonghui (2012). "Constraints on neutrino velocities revisited". Physical Review D. 85 (3): 034022. arXiv:1112.0264. doi:10.1103/PhysRevD.85.034022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  138. ^ ICARUS Collaboration (2012). "A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS". Physics Letters B. 711 (3–4): 270–275. arXiv:1110.3763. doi:10.1016/j.physletb.2012.04.014.
  139. ^ Cowsik, R.; Nussinov, S.; Sarkar, U. (2011). "Superluminal neutrinos at OPERA confront pion decay kinematics". Physical Review Letters. 107 (25): 251801. arXiv:1110.0241. Bibcode:2011PhRvL.107y1801C. doi:10.1103/PhysRevLett.107.251801.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  140. ^ Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang (2011). "Constraints and tests of the OPERA superluminal neutrinos". Physical Review Letters. 107 (24): 241802. arXiv:1109.6667. Bibcode:2011PhRvL.107x1802B. doi:10.1103/PhysRevLett.107.241802.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  141. ^ Cohen, Andrew G.; Glashow, Sheldon L. (2011). "Pair Creation Constrains Superluminal Neutrino Propagation". Physical Review Letters. 107 (18): 181803. arXiv:1109.6562. Bibcode:2011PhRvL.107r1803C. doi:10.1103/PhysRevLett.107.181803.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  142. ^ LSND Collaboration (2001). "Evidence for neutrino oscillations from the observation of ν¯e appearance in a ν¯μ beam". Physical Review D. 64 (11): 112007. arXiv:hep-ex/0104049. Bibcode:2001PhRvD..64k2007A. doi:10.1103/PhysRevD.64.112007.
  143. ^ MiniBooNE Collaboration (2007). "Search for Electron Neutrino Appearance at the Δm2˜1eV2 Scale". Physical Review Letters. 98 (23): 231801. arXiv:0704.1500. Bibcode:2007PhRvL..98w1801A. doi:10.1103/PhysRevLett.98.231801.
  144. ^ MiniBooNE Collaboration (2008). "Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam". Physical Review Letters. 102 (10): 101802. arXiv:0812.2243. Bibcode:2009PhRvL.102j1802A. doi:10.1103/PhysRevLett.102.101802.
  145. ^ "MiniBooNE results suggest antineutrinos act differently". Fermilab today. June 18, 2010. Retrieved 14 December 2011.
  146. ^ MiniBooNE Collaboration (2010). "Event Excess in the MiniBooNE Search for ν¯μ→ν¯e Oscillations". Physical Review Letters. 105 (18): 181801. arXiv:1007.1150. Bibcode:2010PhRvL.105r1801A. doi:10.1103/PhysRevLett.105.181801.
  147. ^ Diaz, Jorge S. (2011). "Overview of Lorentz Violation in Neutrinos". Proceedings of the DPF-2011 Conference. arXiv:1109.4620. Bibcode:2011arXiv1109.4620D.
  148. ^ OPERA collaboration (2011). "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam". arXiv:1109.4897. {{cite journal}}: Cite journal requires |journal= (help)
  149. ^ OPERA collaboration (2012). "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam". arXiv:1109.4897v4. {{cite journal}}: Cite journal requires |journal= (help)
  150. ^ "New measurements from Fermilab's MINOS experiment suggest a difference in a key property of neutrinos and antineutrinos". Fermilab press release. June 14, 2010. Retrieved 14 December 2011.
  151. ^ MINOS Collaboration (2011). "First Direct Observation of Muon Antineutrino Disappearance". Physical Review Letters. 107 (2): 021801. arXiv:1104.0344. Bibcode:2011PhRvL.107b1801A. doi:10.1103/PhysRevLett.107.021801.
  152. ^ MINOS Collaboration (2011). "Search for the disappearance of muon antineutrinos in the NuMI neutrino beam". Physical Review D. 84 (7): 071103. arXiv:1108.1509. Bibcode:2011PhRvD..84g1103A. doi:10.1103/PhysRevD.84.071103.
  153. ^ "Surprise difference in neutrino and antineutrino mass lessening with new measurements from a Fermilab experiment". Fermilab press release. August 25, 2011. Retrieved 14 December 2011.
  154. ^ MINOS Collaboration (2012). "An improved measurement of muon antineutrino disappearance in MINOS". Physical Review Letters. 108 (19): 191801. arXiv:1202.2772. doi:10.1103/PhysRevLett.108.191801.
  155. ^ George Musser (22 August 2007). "Hints of a breakdown of relativity theory?". Scientific American. Retrieved 15 October 2011.
  156. ^ Nodland, Borge; Ralston, John P. (1997). "Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances". Physical Review Letters. 78 (16): 3043–3046. arXiv:astro-ph/9704196. Bibcode:1997PhRvL..78.3043N. doi:10.1103/PhysRevLett.78.3043.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  157. ^ Nodland, Borge; Ralston, John P. (1997). "Nodland and Ralston Reply:". Physical Review Letters. 79 (10): 1958. arXiv:astro-ph/9705190. Bibcode:1997PhRvL..79.1958N. doi:10.1103/PhysRevLett.79.1958.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  158. ^ Borge Nodland, John P. Ralston (1997), Response to Leahy's Comment on the Data's Indication of Cosmological Birefringence, arXiv:astro-ph/9706126
  159. ^ J.P. Leahy: http://www.jb.man.ac.uk/~jpl/screwy.html
  160. ^ Ted Bunn: https://facultystaff.richmond.edu/~ebunn/biref/
  161. ^ Eisenstein, Daniel J.; Bunn, Emory F. (1997). "Appropriate Null Hypothesis for Cosmological Birefringence". Physical Review Letters. 79 (10): 1957. arXiv:astro-ph/9704247. Bibcode:1997PhRvL..79.1957E. doi:10.1103/PhysRevLett.79.1957.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  162. ^ Carroll, Sean M.; Field, George B. (1997). "Is There Evidence for Cosmic Anisotropy in the Polarization of Distant Radio Sources?". Physical Review Letters. 79 (13): 2394–2397. arXiv:astro-ph/9704263. Bibcode:1997PhRvL..79.2394C. doi:10.1103/PhysRevLett.79.2394.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  163. ^ J. P. Leahy: (1997) Comment on the Measurement of Cosmological Birefringence, arXiv:astro-ph/9704285
  164. ^ Wardle; et al. (1997). "Observational Evidence against Birefringence over Cosmological Distances". Physical Review Letters. 79 (10): 1801–1804. arXiv:astro-ph/9705142. Bibcode:1997PhRvL..79.1801W. doi:10.1103/PhysRevLett.79.1801. {{cite journal}}: Explicit use of et al. in: |author= (help)
  165. ^ Loredo; et al. (1997). "Bayesian analysis of the polarization of distant radio sources: Limits on cosmological birefringence". Physical Review D. 56 (12): 7507–7512. arXiv:astro-ph/9706258. doi:10.1103/PhysRevD.56.7507. {{cite journal}}: Explicit use of et al. in: |author= (help)