Wikipedia:Sandbox: Difference between revisions
No edit summary |
←Replaced content with '{{Please leave this line alone (sandbox heading)}}<!-- * Welcome to the sandbox! * * Please leave this part alone...' |
||
Line 5: | Line 5: | ||
* Feel free to try your editing skills below * |
* Feel free to try your editing skills below * |
||
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■--> |
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■--> |
||
I am such a skilled editor! |
|||
--------------------------------------------------------------------- |
|||
In the original Sherlock Holmes (1895), Evil Professor Moriarty stated that when he retired he was going to devote his time studying Abstract Mathematics. |
|||
--------------------------------------------------------------------- |
|||
A [[global field]] is either a [[Field extension|finite algebraic extension]] of <math>\Q</math>, or a [[Field extension|finite algebraic extension]] of the filed of rational functions over a finite field. In the first case the field is called a number field, and in the latter case the field is called a function field. |
|||
The '''Chebotarev Density Theorem''' can be generalized to '''global fields'''. |
|||
Let <math>K</math> be a '''global field'''. The ring of integers of <math>K</math> is denoted by <math>\mathcal{O}_K</math>. In the case <math>K</math> is a number field, <math>\mathcal{O}_K</math> is the integral closure of <math>\Z</math> in <math>K</math>. In the case that <math>K</math> is a function field, <math>\mathcal{O}_K</math> is the integral closure of '''F'''<sub>''p''</sub> in <math>K</math>. |
|||
The '''Artin Symbol''' |
|||
Let <math>L/K</math> be a Galois extension of <math>K</math>. Let <math>\mathfrak{p}</math> be an ideal in <math>\mathcal{O}_K</math> and let <math>\mathfrak{B}</math> be an ideal in <math>\mathcal{O}_L</math>. The decomposition group <math>D_{\mathfrak{B}}</math> is a subgroup of <math>Gal(L/K)</math> which is defined by |
|||
:<math>D_{\mathfrak{B}}=\{\sigma \in G | \sigma(\mathfrak{B})=\mathfrak{B}\}</math> |
|||
The inertia group <math>I_\mathfrak{B}</math> is a subgroup of <math>D_{\mathfrak{B}}</math> which is defined by |
|||
:<math>I_{\mathfrak{B}}=\{\sigma \in G | \sigma(x) \in x + \mathfrak{B} \mbox{ for every x } \in O_L\}</math> |
|||
Let <math>K_{\mathfrak{p}}</math> denote the [[Localization of a ring|localization]] of <math>O_K</math> by <math>\mathfrak{p}</math>. The residue field of <math>K_{\mathfrak{p}}</math> is a finite field. Denote it by <math>\overline{K}_{\mathfrak{p}}</math>, and let <math>N_{\mathfrak{p}}=|\overline{K}_{\mathfrak{p}}|</math>. |
|||
There is a canonical homomorphism from <math>D_{\mathfrak{B}}</math> to <math>Aut(\bar{L}/\bar{K})</math> which is given by |
|||
:<math>\overline{\sigma} (\overline{x})= \overline{\sigma (x)}</math> |
|||
having <math>I_{\mathfrak{B}}</math> as its kernel. |
|||
If <math>\mathfrak{p}</math> is [[Ramification#In algebraic number theory|unramified]] in <math>\mathcal{O}_L</math>, <math>\bar{L}/\bar{K}</math> is Galios and <math>I_{\mathfrak{B}}=\{1\}</math> and the homomorphism defined above is in fact an isomorphism. |
|||
In <math>Gal(\bar{L}/\bar{k})</math> there is a distinctive element, which is the frobinius automorphism <math>Frob \in Gal(\bar{L}/\bar{k})</math>. The element of <math>Gal(L/K)</math> which maps to <math>Frob</math> by the isomorphism described above is denoted by <math>\left[\frac{L/K}{\mathfrak{B}}\right]</math>. It satisfies |
|||
:<math>\left[\frac{L/K}{\mathfrak{B}}\right] x \equiv x^{N_{\mathfrak{p}}}(x) \mod \mathfrak{B}</math> |
|||
if <math>\sigma \in Gal(L/K)</math> then <math>\left[\frac{L/K}{\mathfrak{B}}\right] = \sigma \left[\frac{L/K}{\mathfrak{B}}\right] \sigma^{-1}</math>. Hence |
|||
:<math>\{\left[\frac{L/K}{\mathfrak{B}}\right] \in Gal(L/K) | {\mathfrak{B}} \mbox{ lies over } \mathfrak{p}\}</math> |
|||
is a conjugacy class in <math>Gal(L/K)</math>. This conjugacy class is the Artin Symbol and is denoted by <math>\left(\frac{L/K}{\mathfrak{p}}\right)</math>. The Artin Symbol is defined for every <math>\mathfrak{p}</math> which is unramified in <math>O_L</math>. |
|||
Derichlet density: |
|||
Let <math>P(K)</math> denote the set of prime ideals of <math>\mathcal{O}_K</math>. For a subset <math>A</math> of <math>\mathcal{O}_K</math> The Dirichlet density is defined by |
|||
:<math>\delta(A)=\lim_{s \to 1^{+}} \frac{\sum_{\mathfrak{p} \in A}(N_{\mathfrak{p}})^{-s}}{\sum_{\mathfrak{p} \in P(K)}(N_{\mathfrak{p}})^{-s}}</math> |
|||
The Chebotarev density theorem for global fields is |
|||
Let <math>L/K</math> be a finite Galois extension of global fields and let <math>C</math> be a conjugacy class in <math>Gal(L/K)</math>. Then the Dirichlet density of <math>\{\mathfrak{p} \in P(K)|\left(\frac{L/K}{\mathfrak{p}}\right) = C\}</math> exists and is equal to <math>\frac{|C|}{[L:K]}</math> |
|||
I am an "anonymous" testing edit. I am another edit. And another. Yet one more. |
Revision as of 17:34, 30 July 2014
Welcome to this sandbox page, a space to experiment with editing.
You can either edit the source code ("Edit source" tab above) or use VisualEditor ("Edit" tab above). Click the "Publish changes" button when finished. You can click "Show preview" to see a preview of your edits, or "Show changes" to see what you have changed. Anyone can edit this page and it is automatically cleared regularly (anything you write will not remain indefinitely). Click here to reset the sandbox. You can access your personal sandbox by clicking here, or using the "Sandbox" link in the top right.Creating an account gives you access to a personal sandbox, among other benefits. Do NOT, under any circumstances, place promotional, copyrighted, offensive, or libelous content in sandbox pages. Doing so WILL get you blocked from editing. For more info about sandboxes, see Wikipedia:About the sandbox and Help:My sandbox. New to Wikipedia? See the contributing to Wikipedia page or our tutorial. Questions? Try the Teahouse! |
I am such a skilled editor!